×
04.04.2018
218.016.3259

Способ термического крекинга органических полимерных отходов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002645338
Дата охранного документа
21.02.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к переработке органических полимерных отходов в моторное топливо и химическое сырье, которое может быть использовано в органическом и нефтехимическом синтезе. Способ термического крекинга органических полимерных отходов включает термоожижение полимерных отходов, их нагрев и подачу в реакционную зону реактора ниже верхнего уровня жидкости, пропускание нагретого активирующего неокислительного газа через объем жидкого полимерного сырья с получением более легких углеводородных фракций на верхнем выходе из реактора и более тяжелых углеводородных остатков на нижнем выходе из реактора. При этом нагрев активирующего газа ведут до температуры 320-350°С, термический крекинг проводят при температуре в реакционной зоне реактора 320-405°С и при атмосферном давлении, а в блок термоожижения полимерных отходов подают на рецикл тяжелые углеводородные остатки с нижнего выхода реактора. Способ по изобретению позволяет повысить выход ценных жидких фракций и снизить выход газообразных углеводородов, а также стабилизировать крекинг полимерных остатков. 6 з.п. ф-лы, 4 ил., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к области термической переработке бытовых полимерных отходов в жидкие углеводородные фракции, которые могу использоваться для получения моторных топлив, различных марок котельных топлив и битумов, а также в качестве сырья в органическом нефтехимическом синтезе.

Проблема переработки различных органических промышленных и бытовых полимерных отходов является весьма актуальной в связи с постоянным увеличением количества данных отходов. В промышленности применяются следующие основные направления утилизации и ликвидации органических и полимерных отходов:

1 - переработка отходов в полимерное сырье и повторное его использование для получения изделий;

2 - сжигание вместе с бытовыми отходами;

3 - захоронение на полигонах и свалках;

4 - пиролиз или термические методы для получения жидкого и газообразного топлива.

Капитальные затраты в первом направлении утилизации невелики. При этом не только достигается ресурсосберегающий эффект от повторного вовлечения материальных ресурсов в производственный цикл, но и существенно снижаются нагрузки на окружающую среду. Несмотря на значительные преимущества повторного использования полимерных материалов, таким способом утилизируется лишь незначительное их количество, что связано с трудоемкостью сбора, разделения, сортировки, очистки отходом (прежде всего отходов бытового потребления). К тому же приблизительно 50% органических и полимерных отходов не подлежат сортировке из-за сложного компонентного состава. Второе и третье направление утилизации органических и полимерных отходов связано с большими экологическими нагрузками на окружающую среду. Наиболее перспективны для значительной части органических и полимерных отходов являются методы, относящиеся к четвертому направлению утилизации. В методах, использующих пиролиз, основным продуктом переработки являются углеводородные газы. Экономически более выгодны способы получения жидких углеводородов, которые можно использовать для получения моторных топлив, различных марок котельных топлив и битумов, а также в качестве сырья в органическом нефтехимическом синтезе. Известны многочисленные способы термических крекингов, которые позволяют получать жидкие фракции углеводородов при переработке органических и полимерных отходов.

Известен способ переработки промышленных и бытовых отходов путем термодеструкции резиносодержащих отходов и/или отходов пластмасс в углеводородном растворителе в присутствии катализатора при повышенных температуре и давлении (Патент РФ №2276165, C08J 11/04, опубл. 10.05.2005 г.).

Недостатками известного способа и установки, на которой он реализован, являются многостадийность, а также использование растворителя и специального катализатора, что требует дополнительных затрат на проведение процесса.

Известен способ переработки вторичного полиэтилена (Патент РФ №2106365, C08J 11/04, С10М 171/04, опубл. 10.03.1993 г.). Согласно этому способу измельченный полиэтилен подвергают фракционированию в кипящем растворителе на растворимую золь- и нерастворимую гель-фракции с разделением и промывкой продуктов фракционирования, после чего проводится низкотемпературный пиролиз в вакууме отдельно для каждой фракции. Основными недостатками этого способа являются сложная многостадийная технология процесса, необходимость использования вакуумного оборудования, применение токсичных растворителей.

Известен способ переработки органических промышленных и бытовых полимерных отходов в моторное топливо и химическое сырье, включающий термоожижение отходов в алкилбензоле при температуре 270-420°C и повышенном давлении до 6 МПа в присутствии редкоземельного металла или интерметаллидов на основе редкоземельных металлов, или в присутствии гидрида титана, взятых в количестве 0,5-10% от массы реакционной смеси (Патент РФ №2110535, C08J 11/04, опубл. 10.05.1998 г.).

Существенное ограничение способа заключается в использовании дорогого растворителя и необходимости применения в качестве катализатора дорогостоящих редкоземельных металлов, а также повышенное давление, что увеличивает себестоимость процесса.

Известен способ термического крекинга получения углеводородного сырья из отходов полимеров, таких как полиэтилен, полипропилен, полистирол или их любые смеси с выходом жидких продуктов не менее 85%, с использованием катализатора, представляющий собой либо цеолит алюмосиликатного состава с мольным отношением SiO2/Al2O3 не более 450 и структурой типа: ZSM-5, ZSM-11, ZSM-35, ZSM-38, ZSM-48, BETA, либо галлосиликат, либо галлоалюмосиликат, либо железосиликат, либо железоалюмосиликат, либо хромсиликат, либо хромалюмосиликат со структурой: ZSM-5, ZSM-11, ZSM-35, ZSM-38, ZSM-48, BETA, либо алюмофосфат со структурой типа: AlPO-5, AlPO-11, AlPO-31, AlPO-36, AlPO-37, AlPO-40, AlPO-41 с введенным в структуру любого из указанных видов катализатора на стадии синтеза элементом, выбранным из ряда: магний, цинк, марганец, железо, кремний, кобальт, кадмий или их любая смесь (Патент RU №2451696, 01.2006 г.).

Существенное ограничение способа заключается в использовании дорогого катализатора.

Наиболее близким по своей технической сущности является способ, относящийся к переработке тяжелого углеводородного сырья (Патент Ru №2217472, 10.09.2002). Способ переработки тяжелого углеводородного сырья включает подачу нагретого сырья в реакционный объем, пропускание нагретого активирующего неокислительного газа через объем сырья с получением более легких углеводородных фракций на верхнем выходе из реактора и более тяжелых углеводородных остатков на нижнем выходе из реактора. При этом сырье нагревают до температуры не ниже температуры начала его кипения, активирующий газ нагревают до температуры не ниже 300°C. Исходное сырье и тяжелые углеводородные остатки переработки подают на рециркуляцию в реакционную зону ниже верхнего уровня жидкости. Технический результат - повышение извлечения легких фракций углеводородов с температурой кипения ниже 350°C и газойлевых фракций, а также снижение содержания серы в продуктах переработки при упрощении аппаратурного оформления процесса. В данном способе не используются катализаторы. Пропускание нагретого активирующего неокислительного газа через объем сырья в реакционной зоне реактора позволяет за счет газлифтного процесса осуществлять возгонку фракций углеводородов с температурой кипения выше, чем температура в самой реакционной зоне. При этом происходит интенсивное перемешивание сырья и активируются химические реакции в реакционной зоне. Формируется остаточный продукт переработки в коллоидной форме с высокой каталитической активностью к крекингу тяжелых углеводородов. Для увеличения степени превращения тяжелых углеводородов в легкие углеводороды предлагаются схемы активации процесса переработки жидкими углеводородными фракциями за счет рециркуляции как тяжелого остаточного продукта, так и более легких продуктов переработки непосредственно в реакционную зону реактора.

Недостатком данного технического решения является малая эффективность его использования для получения жидких фракций углеводородов в случае переработки в качестве сырья полимерных отходов. В описанном изобретении сырье нагревают до температуры не ниже температуры начала его кипения, а большинство полимеров уже на стадии плавления деструктурируют с образованием большого количества низкомолекулярного углеводородного газа. За счет большого газообразования резко снижаются выходы жидких углеводородных фракций.

Задачей изобретения является уменьшение выхода углеводородных газов и повышение выхода жидких углеводородов при реализации способа термического крекинга органических полимерных отходов.

Поставленная задача решается способом термического крекинга органических полимерных отходов, включающим термоожижение полимерных отходов, их нагрев и подачу в реакционную зону реактора ниже верхнего уровня жидкости, пропускание нагретого активирующего неокислительного газа через объем жидкого полимерного сырья с получением более легких углеводородных фракций на верхнем выходе из реактора и более тяжелых углеводородных остатков на нижнем выходе из реактора, при этом нагрев активирующего газа ведут до температуры не ниже 260°C, термический крекинг проводят при температуре в реакционной зоне реактора не менее 290°C и при атмосферном давлении, а в узел термоожижения полимерных остатков подают на рецикл тяжелые углеводородные остатки с нижнего выхода реактора, кроме того, как варианты, давление в реакционной зоне поддерживают выше атмосферного давления, в узел термоожижения полимерных остатков подают на рецикл жидкие фракции с верхнего выхода реактора, в узел термоожижения полимерных остатков подают на рецикл жидкие дизельные фракции с верхнего выхода реактора, в узел термоожижения полимерных остатков подают и/или атмосферные (мазут) или вакуумные остатки (гудрон) перегонки нефти, жидкие фракции с верхнего выхода реактора подают на рецикл на выход сырья из узла термоожижения полимерных остатков, жидкие дизельные фракции с верхнего выхода реактора подают на рецикл на выход сырья из узла термоожижения полимерных остатков, на выход сырья из узла термоожижения полимерных остатков подают атмосферные остатки (мазут) или вакуумные остатки (гудрон) перегонки нефти, непосредственно в реакционную зону реактора подают атмосферные остатки (мазут) или вакуумные остатки (гудрон) перегонки нефти, в узел термоожижения полимерных остатков подают котельное топливо, на выход сырья из узла термоожижения полимерных остатков подают котельное топливо, в узел термоожижения полимерных остатков подают на рецикл газойлевые фракции и/или газойлевые фракции продуктов нефтепереработки, на выход сырья из узла термоожижения полимерных остатков подают на рецикл газойлевые фракции и/или газойлевые фракции продуктов нефтепереработки.

На фиг. 1 представлена блок-схема установки по переработке полимерных отходов с использованием в качестве растворителя жидких фракций рецикла тяжелого остаточного продукта переработки с нижнего выхода реактора. В состав установки входят следующие блоки:

блок 1 термоожижения полимерных отходов;

блок 2 нагрева сырья (печь) до требуемой температуры;

блок 3 (реактор) переработки сырья;

блок 4 нагрева (печь) активирующего газа.

Термоожижение полимерных отходов в блоке 1 на начальной стадии осуществляют при температуре 120-150°C. Термоожиженное сырье далее нагревается в печи блока 2 до температуры не ниже 290°C и поступает в нижнюю часть реактора блока 3 в зону ниже уровня верхней границы реакционной зоны. Предпочтительно нагревать сырье до температуры, обеспечивающей температуру в реакционной зоне ректора в пределах 320-405°C при атмосферном давлении. С повышением давления необходимо повышать температуру в реакторе, но предпочтительно не более чем до 450°C, чтобы предотвратить коксование в реакционной зоне. Активирующий газ (углеводородные газы С14, азот, водород, пары воды и т.п.) нагревается в печи блока 4 до температуры не ниже 260°C и подается в барботирующее устройство в нижней части реактора. Предпочтительная температура нагрева активирующего газа 320-350°C. В процессе переработки сырья образуются углеводородные газы и жидкие фракции углеводородов. Углеводородные газы, газ активации и легкие фракции в паровой фазе выходят с верхнего выхода реактора и поступают в потоке I на установки сепарации и ректификации. С нижнего выхода реактора выходит остаточный жидкий продукт переработки. Часть остаточного продукта направляется на рецикл в блок термоожижения 1. Оставшаяся часть остаточного продукта поступает в накопительные емкости товарного парка (поток II). Предпочтительно на рецикл необходимо направлять остаточного продукта в пределах не менее 5 масс. % от массы сырья в блоке термоожижения 1. При выходе на оптимальный рецикл остаточного продукта переработки можно поднять температуру в блоке термоожижения до 240-290°C. В установке предусмотрена линия III подачи в узел термоожижения при необходимости в качестве растворителей продуктов нефтепереработки: атмосферных остатков, вакуумных остатков, газойлевых фракций и различных видов котельного топлива. Продукты нефтепереработки можно вводить дополнительно к рециклу остаточному продукту переработки полимерных отходов для увеличения концентрации растворителя в узле термоожижения и увеличения каталитической активности остаточного продукта переработки или для замены рецикла остаточного продукта переработки полимерных отходов. Каталитическая активность остатков переработки к крекингу сырья возрастает из-за увеличения в остаточном продукте переработки смол и асфальтенов, которые способствуют более быстрому формированию коллоидных частиц в растворе остаточного продукта.

На фиг. 2 представлена блок-схема установки по переработке полимерных отходов с использованием в качестве растворителя жидких фракций рецикла с верхнего выхода реактора. В состав установки входит дополнительно блок 5 для охлаждения и сепарации газопаровой смеси, выходящей с верха реактора. В блоке 5 происходит охлаждение и сепарация газопаровой смеси на жидкую и газовую фазы. Газовая фаза в потоке I поступает на утилизацию. Остаточный продукт переработки в потоке III поступает в накопительные емкости товарного парка. Жидкая фаза в потоке II поступает в накопительные емкости товарного парка и частично поступает непосредственно из потока II на рецикл в блок 1 термоожижения полимерных остатков. Предпочтительно направлять на рецикл жидкие фракции рецикла с верхнего выхода реактор в количестве не менее 5 масс. % от массы сырья в блоке термоожижения, а температуру в реакционной зоне реактора при атмосферном давлении в реакторе поддерживать в пределах 320-385°C. В установке предусмотрена линия IV подачи в узел термоожижения при необходимости в качестве растворителей продуктов нефтепереработки: атмосферных остатков, вакуумных остатков, газойлевых фракций и различных видов котельного топлива. Продукты нефтепереработки можно вводить дополнительно к рециклу жидких фракций с верха реактора для увеличения концентрации растворителя в узле термоожижения или для замены рецикла жидких фракций с верха реактора и увеличения каталитической активности остаточного продукта переработки. Каталитическая активность остатков переработки к крекингу сырья возрастает из-за увеличения в остаточном продукте переработки смол и асфальтенов, которые способствуют более быстрому формированию коллоидных частиц в растворе остаточного продукта.

На фиг. 3 представлена блок-схема установки по переработке полимерных отходов с использованием в качестве растворителя жидких дизельных фракций рецикла с верхнего выхода реактора с температурой кипения ~185-350°C. В отличие от установки, представленной на фиг. 3, в состав блока 5 входит ректификационная колонна, в которой происходит фракционирование газопарового потока с верхнего выхода реактора. В ректификационной колонне происходит фракционирование газопаровой смеси, выходящей с верха реактора, на поток I газовой фазы, поток II жидких бензиновых фракций углеводородов, поток III жидких дизельных фракций и поток IV жидких газойлевых фракций с температурой кипения ≥350°C. Газовая фаза потока I направляется на утилизацию, а жидкие легкие фракции углеводородов потоков I-IV и остаточного продукта переработки потока V направляются в накопительные емкости товарного парка. Часть жидких дизельных фракций направляется на рецикл в блок термоожижения 1 непосредственно из потока III. Значения величин рецикла и температуры в реакционной зоне реактора при атмосферном давлении в реакторе такие же, как и в установке, представленной на фиг. 2. В установке предусмотрена линия VI подачи в узел термоожижения при необходимости в качестве растворителей продуктов нефтепереработки: атмосферных остатков, вакуумных остатков, газойлевых фракций и различных видов котельного топлива. Продукты нефтепереработки можно вводить дополнительно к рециклу жидких дизельных фракций для увеличения концентрации растворителя в узле термоожижения или для замены рецикла жидких дизельных фракций увеличения каталитической активности остаточного продукта переработки.

На фиг. 4 представлена блок-схема установки по переработке полимерных отходов с использованием в качестве растворителя жидких газойлевых фракций рецикла с верхнего выхода реактора с температурой кипения ~350-500°C. Схема установки аналогична блок-схеме фиг. 3. Отличие состоит только в рецикле газойлевых фракций, а не дизельных. Продукты нефтепереработки можно вводить дополнительно к рециклу жидких газойлевых фракций для увеличения концентрации растворителя в узле термоожижения или для замены рецикла жидких газойлевых фракций и увеличения каталитической активности остаточного продукта переработки.

Пример 1. Переработка полиэтиленовых отходов по технологической схеме фиг. 1.

Этиленовая крошка термоожижается в блоке 1 при температуре 150°C, далее нагревается в печи блока 2 и поступает в реактор 3. Температура в реакторе равна 385°C при атмосферном давлении. Объемная скорость подачи сырья равна 2 ч-1. Реакционный объем реактора барботируется природным газом (метан) с объемной скоростью 35 ч-1. Часть остаточного продукта с низа реактора в количестве 20 масс. % от потока сырья подается на рецикл в узел термоожижения 1. Фракционный состав продуктов переработки приведен ниже.

Пример 2. Переработка полиэтиленовых отходов по технологической схеме фиг. 1 с добавлением в качестве растворителя в узел термоожижения 1 атмосферных остатков (мазута) перегонки нефти.

В отличие от примера 1 в этом случае в узел термоожижения 1 вводят в качестве растворителя дополнительно из внешней емкости атмосферные остатки перегонки нефти (мазут) в количестве 10 масс. % от сырья. Технологические параметры переработки такие же, как и в примере 1, Фракционный состав мазута следующий:

Фракционный состав продуктов переработки приводится ниже

Пример 3. Переработка полиэтиленовых отходов по технологической схеме фиг. 2.

Технологические параметры переработки полиэтиленовых отходов такие же, как и в примере 1, но на рецикл в узел термоожижения 1 подаются жидкие фракции с верхнего выхода реактора в количестве 20 масс. % от сырья. Фракционный состав продуктов переработки приводится ниже

Пример 4. Переработка полиэтиленовых отходов по технологической схеме фиг. 3.

Технологические параметры переработки полиэтиленовых отходов такие же, как и в примере 1, но на рецикл в узел термоожижения 1 подаются жидкие фракции с верхнего выхода реактора с температурой кипения 185-350°C в количестве 20 масс. % от сырья. Фракционный состав продуктов переработки приводится ниже

Пример 5. Переработка полиэтиленовых отходов по технологической схеме фиг. 4.

Технологические параметры переработки полиэтиленовых отходов такие же, как и в примере 1, но на рецикл в узел термоожижения 1 подаются жидкие газойлевые фракции с верхнего выхода реактора из ректификационной колонны 5 с температурой кипения 350-500°C в количестве 20 масс. % от сырья. Фракционный состав продуктов переработки приводится ниже

Реализация описываемого способа переработки органических полимерных отходов позволяет повысить выход ценных жидких фракций и снизить выход газообразных углеводородов, а также стабилизировать крекинг полимерных остатков.


Способ термического крекинга органических полимерных отходов
Способ термического крекинга органических полимерных отходов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
20.04.2014
№216.012.bc6b

Способ разработки залежи нефти в отложениях баженовской свиты

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности разработки залежи нефти в отложениях баженовской свиты. Сущность изобретения: по способу осуществляют бурение добывающих и нагнетательных скважин с осуществлением закачки в пласт метансодержащего газа,...
Тип: Изобретение
Номер охранного документа: 0002513963
Дата охранного документа: 20.04.2014
20.10.2014
№216.013.0016

Способ компоновки внутрискважинного и устьевого оборудования для проведения исследований скважины, предусматривающих закачку в пласт агента нагнетания и добычу флюидов из пласта

Изобретение относится к нефтедобывающей отрасли. Техническим результатом является получение максимальной информативности промыслового исследования с закачкой в пласт агента нагнетания и добычей флюидов из пласта в различных условиях, включая исследования в условиях автономии, при наличии толщи...
Тип: Изобретение
Номер охранного документа: 0002531414
Дата охранного документа: 20.10.2014
20.12.2014
№216.013.103b

Способ повышения эффективности уплотняющего бурения скважин

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности уплотняющего бурения скважин, обеспечивающего повышение объемов добычи нефти и более стабильную ее динамику без необходимости увеличения капитальных затрат на бурение. Сущность изобретения: необходимый...
Тип: Изобретение
Номер охранного документа: 0002535577
Дата охранного документа: 20.12.2014
10.03.2016
№216.014.be2f

Способ переработки природного газа и устройство для его осуществления

Группа изобретений относится к способу и устройству переработки природного газа с использованием процесса низкотемпературной сепарации для удаления кислых компонентов. Способ включает первичную сепарацию потока сырого природного газа с отделением от него воды и газового конденсата и последующую...
Тип: Изобретение
Номер охранного документа: 0002576738
Дата охранного документа: 10.03.2016
20.08.2016
№216.015.4ba4

Способ доразработки водоплавающей залежи с запасами низконапорного газа

Изобретение относится к газовой отрасли и связано с проблемой обеспечения эффективной доразработки водоплавающих залежей с остаточными запасами низконапорного газа. В частности, изобретение актуально для крупнейших газовых залежей в отложениях сеномана на месторождениях Севера Западной Сибири,...
Тип: Изобретение
Номер охранного документа: 0002594496
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.cae6

Способ повышения продуктивности добывающих и приемистости нагнетательных скважин

Изобретение относится к нефтегазодобывающей отрасли и, в частности, к методам повышения продуктивности добывающих и приемистости нагнетательных скважин за счет геомеханического воздействия на пласт. Технический результат - повышение дебитов добывающих и приемистости нагнетательных скважин за...
Тип: Изобретение
Номер охранного документа: 0002620099
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.e20c

Способ разработки залежи углеводородов в низкопроницаемых отложениях

Изобретение относится к газонефтедобывающей отрасли, а именно к разработке залежей с трудноизвлекаемыми запасами углеводородов в низкопроницаемых пластах. Технический результат - повышение коэффициентов извлечения углеводородов: газоотдачи, конденсатоотдачи, нефтеотдачи, а также продуктивности...
Тип: Изобретение
Номер охранного документа: 0002625829
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e24f

Способ создания подземного газохранилища в водоносном пласте

Изобретение относится к газовой отрасли промышленности, а именно к созданию подземного газохранилища - ПХГ в водоносном пласте. Технический результат - совершенствование способа создания ПХГ в водоносном пласте с использованием вододобывающих и водонагнетательных скважин за счет повышения...
Тип: Изобретение
Номер охранного документа: 0002625831
Дата охранного документа: 19.07.2017
20.02.2019
№219.016.bc26

Способ геомеханического воздействия на пласт

Изобретение относится к нефтегазовой отрасли промышленности и может быть использовано для повышения эффективности добычи нефти из низкопроницаемых продуктивных пластов при разработке нефтяных месторождений или нефтяных оторочек. Целью изобретения является создание за счет циклического...
Тип: Изобретение
Номер охранного документа: 0002680158
Дата охранного документа: 18.02.2019
23.02.2019
№219.016.c6e2

Способ и устройство для геомеханического воздействия на пласт

Группа изобретений относится к нефтяной промышленности и может быть применена для повышения эффективности добычи нефти из низкопроницаемых продуктивных пластов при разработке нефтяных месторождений. Указанная проблема решается за счет создания вокруг ствола скважины зоны вторичной...
Тип: Изобретение
Номер охранного документа: 0002680563
Дата охранного документа: 22.02.2019
Показаны записи 1-8 из 8.
20.04.2014
№216.012.bc6b

Способ разработки залежи нефти в отложениях баженовской свиты

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности разработки залежи нефти в отложениях баженовской свиты. Сущность изобретения: по способу осуществляют бурение добывающих и нагнетательных скважин с осуществлением закачки в пласт метансодержащего газа,...
Тип: Изобретение
Номер охранного документа: 0002513963
Дата охранного документа: 20.04.2014
20.10.2014
№216.013.0016

Способ компоновки внутрискважинного и устьевого оборудования для проведения исследований скважины, предусматривающих закачку в пласт агента нагнетания и добычу флюидов из пласта

Изобретение относится к нефтедобывающей отрасли. Техническим результатом является получение максимальной информативности промыслового исследования с закачкой в пласт агента нагнетания и добычей флюидов из пласта в различных условиях, включая исследования в условиях автономии, при наличии толщи...
Тип: Изобретение
Номер охранного документа: 0002531414
Дата охранного документа: 20.10.2014
20.12.2014
№216.013.103b

Способ повышения эффективности уплотняющего бурения скважин

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности уплотняющего бурения скважин, обеспечивающего повышение объемов добычи нефти и более стабильную ее динамику без необходимости увеличения капитальных затрат на бурение. Сущность изобретения: необходимый...
Тип: Изобретение
Номер охранного документа: 0002535577
Дата охранного документа: 20.12.2014
10.03.2016
№216.014.be2f

Способ переработки природного газа и устройство для его осуществления

Группа изобретений относится к способу и устройству переработки природного газа с использованием процесса низкотемпературной сепарации для удаления кислых компонентов. Способ включает первичную сепарацию потока сырого природного газа с отделением от него воды и газового конденсата и последующую...
Тип: Изобретение
Номер охранного документа: 0002576738
Дата охранного документа: 10.03.2016
20.08.2016
№216.015.4ba4

Способ доразработки водоплавающей залежи с запасами низконапорного газа

Изобретение относится к газовой отрасли и связано с проблемой обеспечения эффективной доразработки водоплавающих залежей с остаточными запасами низконапорного газа. В частности, изобретение актуально для крупнейших газовых залежей в отложениях сеномана на месторождениях Севера Западной Сибири,...
Тип: Изобретение
Номер охранного документа: 0002594496
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.cae6

Способ повышения продуктивности добывающих и приемистости нагнетательных скважин

Изобретение относится к нефтегазодобывающей отрасли и, в частности, к методам повышения продуктивности добывающих и приемистости нагнетательных скважин за счет геомеханического воздействия на пласт. Технический результат - повышение дебитов добывающих и приемистости нагнетательных скважин за...
Тип: Изобретение
Номер охранного документа: 0002620099
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.e20c

Способ разработки залежи углеводородов в низкопроницаемых отложениях

Изобретение относится к газонефтедобывающей отрасли, а именно к разработке залежей с трудноизвлекаемыми запасами углеводородов в низкопроницаемых пластах. Технический результат - повышение коэффициентов извлечения углеводородов: газоотдачи, конденсатоотдачи, нефтеотдачи, а также продуктивности...
Тип: Изобретение
Номер охранного документа: 0002625829
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e24f

Способ создания подземного газохранилища в водоносном пласте

Изобретение относится к газовой отрасли промышленности, а именно к созданию подземного газохранилища - ПХГ в водоносном пласте. Технический результат - совершенствование способа создания ПХГ в водоносном пласте с использованием вододобывающих и водонагнетательных скважин за счет повышения...
Тип: Изобретение
Номер охранного документа: 0002625831
Дата охранного документа: 19.07.2017
+ добавить свой РИД