×
04.04.2018
218.016.324a

Результат интеллектуальной деятельности: Способ измерения поляризационного потенциала стальных трубопроводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано для оценки поляризационного потенциала подземных трубопроводов в процессе их электрометрического обследования. Сущность заявленного технического решения заключается в том, что предлагается в способе измерения поляризационного потенциала стального трубопровода изменение тока поляризации осуществлять путем изменения сопротивления электрической цепи, состоящей из последовательно соединенных первого, второго и третьего резисторов и подключенной к двум входам схемы измерения поляризационного потенциала трубопровода, соединенным соответственно с пунктом измерения и электродом сравнения, при этом вначале усиливают и измеряют падение напряжения U от протекающего тока поляризации на первом и втором резисторах, подключенных к выходу пункта измерения, а далее увеличивают ток поляризации путем шунтирования первого и второго резисторов электрической цепи, измеряют усиленное падение напряжения и определяют поляризационный потенциал по формуле где - сопротивление первого резистора, подключенного к выходу пункта измерения; R 2 R 3 Ky Техническим результатом заявленного изобретения является повышение точности измерения поляризационного потенциала без изменения энергетических параметров станции катодной защиты и достоверности сведений о защищенности стальных трубопроводов. 2 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для оценки поляризационного потенциала подземных трубопроводов в процессе их электрометрического обследования.

Подземные стальные трубопроводы наряду с хорошо изолированными участками имеют и участки с отдельными дефектами в защитном покрытии и распределенные локальные повреждения. Такие участки поляризуются при контакте с электролитом грунта до величины естественного потенциала. При наличии катодной защиты под действием электрического потенциала через повреждения изоляционного покрытия начинает протекать ток, который вызывает поляризационные процессы на границе металл-электролит грунта. При этом к естественному потенциалу трубопровода добавляется активационная и концентрационная составляющая поляризации. Кроме этого, к результатам наземных измерений поляризационного потенциала добавляется еще и падение напряжения в грунте от протекания через него поляризационного тока [Сидоров Б.В., Ботов В.М., Курганова И.Н. и др. Количественный подход к оценки фактического состояния подземных газопроводов // Надежность газопроводных конструкций. М.: ВНИИГАЗ. 1990. - С. 27-39].

Согласно нормативным документам, например ГОСТ Р 51164-98, защищенность подземных трубопроводов оценивают величиной поляризационного потенциала в интервале -0,85 В ~ +1,1 В с удельным электрическим сопротивлением грунтов более 10 Ом⋅м. В более низкоомных грунтах установлено более высокое значение потенциала в интервале -0,95 В ~ +1,15 В. Как следует из приведенных норм по поляризационным потенциалам даже небольшая погрешность в их оценке может привести к ложным выводам о защищенности трубопроводов и, как следствие, возможной их коррозии. Поэтому используют ряд способов измерения поляризационного потенциала, позволяющих минимизировать погрешности этих измерений.

Известен способ измерения поляризационного потенциала подземных стальных трубопроводов, при котором измеряемый потенциал фиксируют вольтметром, включенным между трубой и измерительным электродом сравнения [Глазков В.И., Котик В.Г. Труды ВНИИСТ. - Вып. 23. - 1970. - С. 13-28]. При этом способе в измеряемую величину входит также омическое падение напряжения в грунте от поляризационного тока. Однако омическое падение напряжения в грунте не характеризует кинетику электрохимических процессов, происходящих на металлической поверхности подземных трубопроводов. Поэтому его необходимо исключить из результатов измерения для повышения достоверности контроля.

Известен способ измерения поляризационного потенциала подземных стальных трубопроводов, заключающийся в том, что измеряют потенциалы электрода сравнения при включенном и отключенном поляризационном токе, а время отключения устанавливают таким, чтобы трубопровод не успел деполяризоваться [а.с. СССР №305423, МПК G01R 27/20, опубл. 04.06.1971]. Реализация этого способа предполагает наличие управляемых переключателей тока, осуществляющих периодическое включение и отключение тока выпрямителей катодной системы защиты трубопроводов. Это обстоятельство ограничивает оперативный контроль трубопроводов, кроме того, на трубопроводах большой протяженности из-за различия поляризационных потенциалов возникают уравнительные токи, которые также создают омическое падение напряжения, искажающее результат измерения. Кроме того, этот способ не применим на участках трубопроводов, имеющих протекторную защиту, а также в зоне действия блуждающих токов.

Наиболее близким аналогом к заявляемому способу является способ измерения поляризационного потенциала подземных стальных трубопроводов, заключающийся в том, что сравнивают потенциал подземной трубы в пункте измерения с потенциалом электрода сравнения, расположенного на поверхности над осью трубопровода, изменяют ток поляризации, измеряют разность сравниваемых потенциалов и определяют поляризационный потенциал по формуле

где Е - номинальное выходное напряжение станции катодной защиты;

Uс-з - потенциал сооружение - земля, включающий в себя омическую составляющую падения напряжения в грунте от протекающего тока поляризации I⋅R;

R - активное сопротивление участка цепи между подземным сооружением и неполяризующимся электродом сравнения;

Rц - активное сопротивление всей электрической цепи станции катодной защиты;

I=Е/Rц - общий ток всей электрической цепи. [Методика оценки фактического положения и состояния подземных трубопроводов. ВРД39-1.10-026-2001 - М.: Научно-исследовательский институт природных и газовых технологий. - ВНИИГАЗ. - Раздел 3.3.1 Экстраполяционные методы. - С. 24-27]. Кроме того, способ включает изменение (уменьшение или увеличение) выходного напряжения станции катодной защиты относительно номинального значения, измерение величины напряжения трубопровод-земля при известном напряжении на выходе станции катодной защиты, измерение двух значений токов поляризации и определение поляризационного потенциала трубопровода по формуле

где U1 - напряжение трубопровод - земля при номинальном значении напряжения станции катодной защиты;

U 2 - напряжение трубопровод - земля при измененном значении напряжения станции катодной защиты;

k - коэффициент отношения напряжений или токов поляризации в процессе испытаний.

По способу-прототипу исключено влияние омического падения напряжения в грунте от тока поляризации. Однако реализация этого способа требует кратковременного изменения (увеличение или уменьшение) выходной мощности станции катодной защиты от ее номинального значения и фиксирование выходных токов или выходных напряжений до момента измерения и после момента измерения одного из этих параметров станции катодной защиты и измерение разности потенциалов труба-земля, соответственно, в эти моменты времени. При протяженном или разветвленном трубопроводе такие синхронизированные операции на станции катодной защиты и на пункте измерения осуществить практически невозможно. При этом повторное измерение уровня поляризации, вследствие кратковременного изменения параметров станции катодной защиты, возможно только через время, которое превышает первоначальное значение времени измерения более чем в 10 раз. Все это не обеспечивает достоверного контроля состояния коррозионной защиты трубопроводов.

Таким образом, к недостаткам прототипа относится неточность измерения поляризационного потенциала стальных трубопроводов, что влияет на достоверность сведений о коррозии стального трубопровода.

Техническим результатом заявляемого изобретения является повышение точности измерения поляризационного потенциала без изменения энергетических параметров станции катодной защиты и достоверности сведений о защищенности стальных трубопроводов.

Способ измерения поляризационного потенциала стального трубопровода, заключающийся в том, что измеряют потенциал стальной трубы в пункте измерения относительно потенциала электрода сравнения, расположенного на поверхности грунта над осью трубопровода, отличается тем, что изменение тока поляризации осуществляют путем изменения сопротивления электрической цепи, состоящей из последовательно соединенных первого, второго и третьего резисторов и подключенной к двум входам схемы измерения поляризационного потенциала трубопровода, соединенным соответственно с пунктом измерения и электродом сравнения, при этом вначале усиливают и измеряют падение напряжения U1 от протекающего тока поляризации на первом и втором резисторах, подключенных к выходу пункта измерения, а далее увеличивают ток поляризации путем шунтирования первого и второго резисторов электрической цепи, измеряют усиленное падение напряжения U2 и определяют поляризационный потенциал Up по формуле

где R1 - сопротивление первого резистора, подключенного к выходу пункта измерения;

R 2 - сопротивление второго резистора;

R 3 - сопротивление третьего резистора, подключенного к выходу электрода сравнения;

Ky - коэффициент усиления падения напряжения; .

Подключение между пунктом измерения и электродом сравнения электрической цепи, состоящей из трех последовательно соединенных резисторов, позволяет осуществить масштабирование сравниваемых напряжений, а последующее коммутирование первого и второго резисторов электрической цепи вызывает изменение в ней поляризующего тока и соответствующие изменения сравниваемых напряжений, что позволяет после их усиления и измерения определить значения поляризационного потенциала по формуле (3). Периодическое коммутирование резисторов электрической цепи (с частотой коммутации 100÷200 Гц) позволяет в автоматическом режиме достаточно быстро получить результат измерения поляризационного потенциала трубопровода без дополнительных изменений напряжения или тока станции катодной защиты. Дополнительная измерительная информация о величине сопротивления грунта (4) в зоне контроля стального трубопровода позволяет оптимизировать величину защитного потенциала трубопровода с учетом локальных условий по составу и влажности грунта в зоне контроля

На фиг. 1 представлена функциональная схема для реализации способа измерения поляризационного потенциала стального трубопровода; на фиг. 2 - ее подключение к стальному трубопроводу.

Схема измерения 1 поляризационного потенциала стального трубопровода имеет два входа 2 и 3, между которыми включена электрическая цепь 4, состоящая из последовательно соединенных первого, второго и третьего резисторов 5, 6, 7 соответственно. При этом первый 5 и второй 6 резисторы зашунтированы ключом 8, управляемым сигналом от микроконтроллера 9. Точка соединения первого резистора 5 и второго резистора 6 подключена к инверсному входу дифференциального усилителя 10, прямой вход которого непосредственно соединен с входом 3. Выход усилителя 10 подключен к измерительному входу микроконтроллера 9, соединенного с регистрирующим устройством 11.

Подключение схемы измерения поляризационного потенциала 1 к трубопроводу 12 происходит следующим образом. Трубопровод 12 гальванически соединен с контрольно-измерительным пунктом 13, к выходной клемме которого подключают вход 2 схемы измерения потенциала 1, а вход 3 схемы 1 подключают к электроду сравнения 14. Таким образом, между контрольно-измерительным пунктом 13 и электродом сравнения 14 гальванически включена резистивная электрическая цепь 4. Станция катодной защиты 15 отрицательной клеммой соединена с трубопроводом 12, а положительной клеммой - с анодным заземлителем 16, заглубленным в грунте 17.

Измерение поляризационного потенциала осуществляется следующим образом.

В непосредственной близости от трубопровода 12 над его осью на поверхности грунта устанавливают электрод сравнения 14. Между пунктом измерения 13 и электродом сравнения 14 по резистивной электрической цепи 4 протекает поляризующий трубопровод ток I1. Значение этого тока

где Up - поляризационный потенциал;

R 1 - сопротивление первого резистора 5;

R 2 - сопротивление второго резистора 6;

R 3 - сопротивление третьего резистора 7;

R г - сопротивление грунта 17.

Падение напряжения от поляризующего тока I1 на втором 6 и третьем 7 резисторах относительно электрода сравнения 14 поступает на инверсный вход дифференциального усилителя 10. Усиленное падение напряжения измеряют микроконтроллером 9

где Kу - коэффициент усиления дифференциального усилителя 10.

Увеличивают исходный ток I1 через резистивную электрическую цепь 4, для чего шунтируют ключом 8 первый 5 и второй 6 резисторы. Тогда измененное значение поляризующего тока равно

При этом на инверсный вход дифференциального усилителя 10 поступает падение напряжения на третьем резисторе 7 от измененного тока I2 через параллельно включенные первый 5 и второй 6 резисторы, что обеспечивают коммутацией ключа 8 (за счет шунтирования). Так как дифференциальный усилитель 10 имеет высокое входное сопротивление (), то измеренное значение усиленного падения напряжения практически не зависит от сопротивлений R1 и R2 и принимает вид

Решая уравнение (6) и (8) последовательно относительно Rг и Up получим формулы для определения поляризационного потенциала

где

и сопротивления грунта

Из выражения (9) следует, что показание регистрирующего устройства 11 соответствует значению поляризационного потенциала Up и не зависит от сопротивления Rг, а следовательно, и от падения напряжения, вызванного протеканием тока поляризации в грунте.

Выражение (10) позволяет одновременно с поляризационным потенциалом измерить сопротивление грунта. Согласно ГОСТ Р 51164-98, информация о сопротивлении грунта необходима для оценки величины защитного потенциала, который нормируется в зависимости от удельного сопротивления грунта. Так, при температуре до 20°С для грунта с удельным сопротивлением более 10 Ом⋅м величина поляризационного потенциала достаточна в пределах от минус 0,85 В до минус 1,10 В. В более низкоомных грунтах с удельным электрическим сопротивлением менее 10 Ом⋅м величина защитного потенциала должна быть в пределах от минус 0,95 В до 1,15 В относительно медносульфатного электрода сравнения 14.

В отличие от способа-прототипа реализация предложенного способа не требует изменения параметров станции катодной защиты (уменьшение или увеличение поляризационного тока трубопровода). При этом не изменяется общий ток поляризации. В предлагаемом способе изменяют только локальный ток в цепи между электродом сравнения 14 и пунктом измерения 13. Для уменьшения влияния деполяризации на участке контроля стального трубопровода, которая уже ощутима спустя несколько единиц миллисекунд (определяется конкретными физико-химическими свойствами грунта и конструктивными параметрами трубопровода [ГОСТ Р 51164-98]) частоту коммутации ключа 8 выбирают достаточно высокой (100÷200 Гц), что обеспечивает надежную диагностику стального трубопровода даже при значительных дефектах его изоляционного покрытия.

Использование предлагаемого способа в системах контроля газо- и нефтеобеспечения позволяет:

- измерять поляризационные потенциалы протяженных стальных трубопроводов с исключением влияния сопротивления грунта без изменения мощности катодной станции защиты, обычно удаленной от пункта измерения;

- одновременно с измерением величины поляризационного потенциала получать информацию о сопротивлении грунта в зоне контроля без дополнительных измерений с помощью мегомметра и дополнительных заземленных электродов;

- вносить коррективы в величину защитного потенциала трубопровода в зависимости от фактического значения сопротивления грунта в зоне контроля и без использования сезонных коэффициентов электропроводности грунта;

- повысить точность измерения поляризационного потенциала благодаря отсутствию процесса деполяризации трубопровода в зоне измерений вследствие неизменности защитного потенциала;

- устройство для реализации предлагаемого способа может быть изготовлено на основе стандартных элементов, выпускаемых электронной промышленностью, и не требует использования специальных узлов с индивидуальными характеристиками.

Предлагаемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо, т.е. удовлетворяет критериям, предъявляемым к изобретениям.


Способ измерения поляризационного потенциала стальных трубопроводов
Способ измерения поляризационного потенциала стальных трубопроводов
Способ измерения поляризационного потенциала стальных трубопроводов
Способ измерения поляризационного потенциала стальных трубопроводов
Способ измерения поляризационного потенциала стальных трубопроводов
Способ измерения поляризационного потенциала стальных трубопроводов
Источник поступления информации: Роспатент

Показаны записи 21-30 из 62.
29.05.2018
№218.016.565e

Способ получения координационного соединения меди(ii) с пиколиновой кислотой

Изобретение относится к способу получения комплексного пиколината меди(II). Способ включает взаимодействие металла с лигандом в присутствии органического растворителя с последующим отделением осадка. В качестве растворителя применяется система диметилформамид:вода с объемным соотношением...
Тип: Изобретение
Номер охранного документа: 0002654464
Дата охранного документа: 18.05.2018
09.06.2018
№218.016.5ff6

Способ получения тонких пленок оксида олова-индия

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении дисплеев, светоизлучающих диодов, затворов полупроводниковых структур типа металл-диэлектрик-полупроводник, газовых сенсоров и защитных покрытий. Способ получения тонких пленок оксида олова-индия,...
Тип: Изобретение
Номер охранного документа: 0002656916
Дата охранного документа: 07.06.2018
14.06.2018
№218.016.61dc

Биотопливный элемент

Изобретение относится к области электротехники, а именно к биотопливному элементу (БТЭ), и может быть использовано для создания маломощных необслуживаемых источников постоянного тока, вырабатывающих электрическую энергию при окислении органических веществ при помощи микроорганизмов....
Тип: Изобретение
Номер охранного документа: 0002657289
Дата охранного документа: 13.06.2018
19.07.2018
№218.016.7223

Способ получения (1-адамантил)фуранов

Настоящее изобретение относится к способу получения адамантилированных фуранов, которые являются полупродуктами для тонкого органического синтеза. Способ заключается в адамантилировании фуранов 1-адамантанолом в среде нитрометана в присутствии кислоты Льюиса, в качестве которой использовались...
Тип: Изобретение
Номер охранного документа: 0002661482
Дата охранного документа: 17.07.2018
26.10.2018
№218.016.964b

Ик-спектрометрический способ определения неуглеводородной смазочно-охлаждающей жидкости в сжатом воздухе

Изобретение относится к области аналитической химии и касается ИК-спектрометрического способа определения неуглеводородной смазочно-охлаждающей жидкости в сжатом воздухе. Способ включает в себя нахождение перед заправкой компрессора аналитической зависимости между концентрацией неуглеводородной...
Тип: Изобретение
Номер охранного документа: 0002670726
Дата охранного документа: 24.10.2018
28.10.2018
№218.016.979c

Способ получения нафтеновых кислот

Изобретение относится к способу получения нафтеновых кислот путем обработки водного раствора смеси натриевых солей нафтеновых кислот (мылонафта) с контролем рН среды. Способ характеризуется тем, что раствор мылонафта подают в электродиализатор-синтезатор, содержащий биполярные и катионообменные...
Тип: Изобретение
Номер охранного документа: 0002670966
Дата охранного документа: 26.10.2018
02.12.2018
№218.016.a314

Способ калибровки двухканального супергетеродинного приемника в измерителе комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при калибровке измерителей комплексных коэффициентов передачи СВЧ-устройств с преобразованием частоты. Техническим результатом является повышение точности измерений, упрощение процесса измерений, уменьшение числа...
Тип: Изобретение
Номер охранного документа: 0002673781
Дата охранного документа: 29.11.2018
14.12.2018
№218.016.a729

Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов

Способ изготовления водородного электрода для кислородно-водородного топливного элемента относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов. Он включает закрепление на...
Тип: Изобретение
Номер охранного документа: 0002674748
Дата охранного документа: 13.12.2018
17.03.2019
№219.016.e2c6

Устройство для измерения комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Предлагается устройство для измерения комплексных коэффициентов передачи и отражения СВЧ-устройств...
Тип: Изобретение
Номер охранного документа: 0002682079
Дата охранного документа: 14.03.2019
27.04.2019
№219.017.3d0c

Способ восстановления латунных кожухотрубных теплообменников

Изобретение относится к теплоэнергетике и может быть использовано для очистки теплоэнергетического оборудования, где в качестве теплоносителя используется вода, в том числе полностью забитых и не пригодных к эксплуатации кожухотрубных теплообменников от отложений, представленных на 80-90%...
Тип: Изобретение
Номер охранного документа: 0002686251
Дата охранного документа: 24.04.2019
Показаны записи 11-16 из 16.
13.02.2018
№218.016.215e

Способ получения ацетиленовых кетонов

Настоящее изобретение относится к способу получения ароматических ацетиленовых кетонов общей формулы где Ar - ароматический радикал, R - СН, i-СН, CH, которые находят разнообразное применение в синтезе различных гетероциклических соединений. Способ включает взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002641697
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.265a

Способ получения ацетилсалицилата тербия(iii)

Изобретение относится к получению ацетилсалицилата тербия(III), который находит применение в качестве излучающего вещества в электролюминесцентных устройствах. Описывается электрохимический синтез ацетилсалицилата тербия(III) в безводном ацетонитрильном растворе фонового электролита - хлорида...
Тип: Изобретение
Номер охранного документа: 0002643966
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2cb6

Способ изготовления интегральных микролинз

Изобретение относится к интегральной оптике, а именно к способам обработки стекла, что позволит при применении таких стёкол улучшить качество датчиков волнового фронта и получить объемное изображение в трехмерных стереоскопических системах. Технический результат изобретения - создание микролинз...
Тип: Изобретение
Номер охранного документа: 0002643824
Дата охранного документа: 06.02.2018
10.05.2019
№219.017.5176

Измерительный комплекс для поиска и диагностики подземных коммуникаций

Изобретение относится к электроизмерительной технике и может быть использовано для оценки фактического положения и состояния подземных коммуникаций. Технический результат: повышение надежности и достоверности диагностики подземных коммуникаций. Сущность: измерительный комплекс состоит из...
Тип: Изобретение
Номер охранного документа: 0002687236
Дата охранного документа: 08.05.2019
12.08.2019
№219.017.be36

Способ измерения сопротивления изоляционного покрытия трубопровода

Изобретение относится к электроизмерительной технике и может быть использовано для оценки сопротивления изоляционного покрытия подземных трубопроводов в процессе их электрометрического обследования. Для уменьшения продолжительности и трудоемкости трассовых работ при определении технического...
Тип: Изобретение
Номер охранного документа: 0002697009
Дата охранного документа: 08.08.2019
15.04.2020
№220.018.14b7

Способ диагностики дефектов изоляционного покрытия трубопроводов

Изобретение относится к электроизмерительной технике и может быть использовано для оценки фактического положения и состояния подземных коммуникаций. Для повышения точности идентификации мест повреждения в изоляционном покрытии трубопровода предлагается контактный способ измерения градиентов...
Тип: Изобретение
Номер охранного документа: 0002718711
Дата охранного документа: 14.04.2020
+ добавить свой РИД