×
04.04.2018
218.016.2fde

Результат интеллектуальной деятельности: ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС НА ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в замкнутом объеме, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее магнитное поле. Пьезомодули выполнены в виде трех модулей, изготовленных из пакета шайб пьезоэлементов, расположенных в замкнутом пространстве, содержащем центральные и внешние полости, разделенные между собой. Центральные и внешние полости модулей сочленены между собой с помощью шлангов. Технический результат, достигаемый при реализации изобретения, заключается в повышении напора насоса, а также в увеличении КПД. 4 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Известен насос, выполненный на пьезоэлектрических элементах, описанный в патенте RU 2452872 С1, 10.06.2012.

Насос содержит корпус, в котором расположен вытеснитель, выполненный из пьезоэлектрических элементов, т.е. из материала, способного изменять свои габаритные размеры при подведении к нему электрического потенциала. Перекачивание текучей среды происходит за счет изменения габаритных размеров вытеснителя, расположенного во внутреннем канале.

Недостаток известного технического решения заключается в низкой эффективности насоса, выполненного согласно данному устройству. Кроме того, пьезоэлементы насоса быстро нагреваются, что вынуждает останавливать процесс перекачивания на время остывания.

Ближайшим аналогом заявленного технического решения является устройство перистальтического насоса текучих сред, описанного в статье: А.Н. Виноградов, Г.Е. Духовенский «Исследование пьезэлектрических микронасосов для медицинской и космической техники» (см. в интернете на сайте «http://nuclphys.sinp.msu.ru/school/s11/11_16.pdf».

Известный перистальтический насос текучих сред содержит пьезомодули, с замкнутым объемом с внутренних и внешних сторон омываемые текучей средой, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, широко применяемому в электрических машинах переменного тока, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее магнитное поле, генерируемое обмотками. Бегущее поле образуется от последовательного сжатия и растяжения пьезоэлементов.

Недостатком известного насоса является то обстоятельство, что он предназначен для перемещения малых объемов текучей среды и может быть применен в лишь микроаналитических системах.

Задача, на решение которой направлено настоящее техническое решение, состоит в создании эффективного и надежного насоса, способного проталкивать текучую среду через центральные и внешние каналы пьезоэлементов.

Технический результат, достигаемый при реализации изобретения, заключается в повышении производительности насоса, а также в увеличении его КПД.

Для решения поставленной задачи с достижением технического результата в известном устройстве для перекачивания текучих сред, содержащем пьезомодули, установленные в замкнутом объеме, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее силовое поле, согласно изобретению пьезомодули выполнены в виде трех отдельных узлов, каждый из которых изготовлен из шайб пьезоэлементов, плотно примыкающих друг к другу и расположенных в замкнутом пространстве, содержащем центральные и внешние полости, разделенные между собой, причем и центральные, и внешние полости модулей каждые сочленены между собой с помощью своих шлангов.

Узлы модулей могут быть расположены последовательно на одной оси.

Узлы модулей могут быть расположены последовательно змейкой так, что их оси параллельны друг другу.

Электрическая система, подающая возбуждающее трехфазное напряжение на пьезомодули, может содержать регулятор частоты.

Электрическая система, подающая возбуждающее трехфазное напряжение на пьезомодули, может содержать регулятор переменного напряжения.

Выполнение пьезомодулей в виде трех узлов, изготовленных из пакета шайб пьезоэлементов, расположенных в замкнутом пространстве, содержащем центральные и внешние полости, каждые из которых разделены между собой и сочленены с помощью своих шлангов, позволяет повысить производительность насоса и, тем самым, поднять его КПД.

Расположение узлов модулей последовательно по одной оси ведет к снижению потерь на трение при протекании текучих сред.

Расположение узлов модулей последовательно змейкой, так, что их оси параллельны друг другу, обеспечивает большую компактность насоса.

Наличие регулятора частоты в электрической системе, подающей возбуждающее трехфазное напряжение на пьезомодули, позволяет управлять скоростью потока текучей среды.

Наличие регулятора напряжения в электрической системе, подающей возбуждающее трехфазное напряжение на пьезомодули, позволяет управлять давлением потока текучей среды.

Указанные преимущества изобретения, а также его особенности поясняются лучшими вариантами выполнения со ссылками на чертежи.

Фиг. 1 - Силовой блок насоса, выполненный из пьезоэлементов в виде шайб.

Фиг. 2 - Разрез одного пьезоэлектрического модуля в сборе (провода не изображены).

Фиг. 3 - Общий вид насоса текучей среды.

Фиг. 4 - Расположение модулей последовательно змейкой.

Фиг. 5 - Вид на модули по фиг. 4 сверху.

Фиг. 6 - Блок электропитания одного узла пьезоэлектрического нагнетателя.

Фиг. 7 - Графики ЭДС, подаваемых на три узла пьезоэлементов.

Фиг. 8 - Структурная система управления узлами насоса.

Перистальтический насос на пьезоэлектрических элементах 1 (фиг. 1) содержит блок шайб 2, изготовленных из пьезоэлементов, плотно прилегающих друг к другу и расположенных в виде столба, с центральной полостью 3.

Поверхности каждой шайбы снабжены электродами (на фиг. 1 не показаны). Электроды получают питание от цепи переменного тока через трансформатор и преобразователь (на фиг. 1 не показана). Внутренняя и внешняя поверхности столба из шайб залиты слоем из термостойкой резины (не показан).

С одной стороны от блока шайб расположена наружная шайба 4 с отверстием по середине с выходным штуцером 5. С другой стороны имеется такая же шайба 6 с отверстием по середине и штуцером 7. Шайба 4 и шайба 6 вместе с блоком из пьезоэлементов залиты наружным слоем терморезины. Блок шайб помещают внутри трубчатого корпуса 8 (фиг. 2), выполненного из плотной пластмассы или металла. С двух сторон корпус 8 снабжен крышками 9 и 10. Сквозь крышки через сальники 11 и 12 проходят штуцеры: через сальник 11 проходит штуцер 5; сквозь сальник 12 проходит штуцер 7. Между крышкой 9 и наружной шайбой 4 установлена кольцевая прокладка 13, выполненная из пружинистого материала, например синтетической резины. Аналогичная прокладка 14 установлена между крышкой 10 и шайбой 6. Указанные прокладки делят внутреннее пространство трубчатого корпуса 8 на центральную полость 3 и внешнюю полость 15, проходящую между внутренней поверхностью трубчатого корпуса 8 и внешней поверхностью 1 шайб 2. Обе полости оказываются изолированными друг от друга. Трубчатый корпус 8 с двух сторон снабжен отверстиями 16 и 17, расположенными диаметрально по отношению друг к другу. Эти отверстия необходимы для связи внешней полости с окружающей средой. В эти отверстия вставлены трубки соответственно 18 и 19. В свою очередь штуцеры 5 и 7 снабжены трубками соответственно 20 и 21.

Каждый трубчатый корпус 8 с пьзоэлементами со своими двумя полостями (фиг. 2) представляет собой узел, обозначенный соответственно А, В или С.

Центральные полости узла А, В, С расположены последовательно (фиг. 3). Их внешние полости также последовательно отдельно соединяют между собой. При этом входная трубка центральной полости объединенного трехзвенного узла обозначена на фиг. 3 индексом 20А, а выходная трубка центрального объединенного трехзвенного узла обозначена индексом 21С. В свою очередь, внешние полости трехзвенного узла соединены по стрелкам: 19А - 18В, 19В - 18С. Входная трубка трехзвенного внешнего узла обозначена индексом 18А, а выходная трубка трехзвенного внешнего узла обозначена индексом 19С.

В варианте технического решения узлы А, В и С расположены последовательно змейкой (фиг. 4). При этом их центральные оси расположены параллельно. Внешние поверхности узлов примыкают друг к другу. На фиг. также показаны трубки, соединяющие их центральные полости. Центральные полости соединены последовательными трубками. Входная трубка обозначена 20А, а выходная обозначена 21С. В свою очередь внешние полости сочленены между собой по тому же принципу, что и на фиг. 3. Внешние полости на фиг. 5, так же как и на фиг. 3, имеют следующую нумерацию: 19А - 18В, 19В - 18С. Узлы расположены так, что их боковые поверхности примыкают друг к другу. Для наглядности узлы на фиг. 5 разнесены между собой.

Электрическая схема питания каждого пьезоэлектрического модуля содержит понижающий трансформатор 22 (фиг. 4), в котором имеется обмотка высокого напряжения с проводами 23 и 24 и набор обмоток низкого напряжения. Провода низкого напряжения обозначены на схеме цифрами: провода 25, 26, подающие питание к первой пьезоэлектрической шайбе; провода 27, 28 для питания второй пьезоэлектрической шайбы; провода 29, 30 для питания третьей пьезоэлектрической шайбы и т.д. В схеме показан также регулятор напряжения 31. Частота питания трансформатора определяет производительность нагнетателя.

Каждый трансформатор модуля получает питание от своей фазы переменного трехфазного тока. В частности, трансформатор модуля А получает питание от фазы А, трансформатор модуля В получает питание от фазы В, а трансформатор модуля С питается от фазы С. Поскольку фазы А, В и С сдвинуты по отношению друг к другу на 120° (фиг. 5), а модули разнесены в пространстве, то в результате получаем бегущую волну напряжений питания трансформаторов и, соответственно, модулей. Структурная система управления модулей нагнетателя состоит из блока выпрямления 32 (фиг. 6), промежуточного блока управления 33 и инвертора 34. Последний преобразует постоянный ток в переменный трехфазный ток требуемой частоты. Напряжение, подаваемое на систему питания модулей, регулируется для всех трех фаз одновременно с помощью системы управления 35.

Перистальтический насос на пьезоэлектрических элементах действует следующим образом.

При подаче переменного тока на провода 25, 26, 27, 28 и т.д. (фиг. 5) и на шайбы из пьезоэлементов (фиг. 1, 2) пьезоэлектрические элементы каждого узла одновременно начинают изменять свои габаритные размеры. При определенной полярности сигнала внутренний и внешний размеры всех пьезоэлементов увеличиваются, при противоположной полярности эти размеры уменьшаются. В процессе увеличения внутреннего размера 1 (фиг. 1, 2) текучая среда будет стремиться заполнить образующийся частичный вакуум, а при сжатии текучая среда будет вытолкнута во внешнее пространство. При наличии кольцевых прокладок 13 и 14 текучая среда поступает в центральную полость 3 при его расширении и выдавливается наружу по трубкам 20 и 21 (фиг. 2). В то же время внешняя полость 15 при расширении пьезоэлементов 2 будет выжимать из себя текучую среду и, наоборот, втягивать ее внутрь при сжатии указанных элементов. На модули А, В и С подается переменное трехфазное возбуждающее напряжение (фиг. 5). Если ЭДС одной фазы (например, фазы А) принять за исходную и считать ее начальную фазу равной нулю, то выражения мгновенных значений ЭДС можно записать в виде eA = Em sin t, eB = Em sin (ωt-120°), еС = Em sin (ωt - 240°) = Em sin (ωt + 120°). Поэтому пакеты пьезоэлементов будут последовательно, поочередно изменять свой объем. В результате создается перистальтическая бегущая волна деформаций замкнутых объемов узлов. Особенность этой волны заключается в том, что в такой системе нет необходимости в обратных клапанах. В то же время такую волну легко повернуть вспять. Для этого достаточно изменить чередование любых двух фаз.

Скорость бегущей волны деформации V изменяют путем регулирования частоты бегучей волны (фиг. 6), согласно уравнению V=2fτ, где f - частота, τ=V/2f - полюсное деление, т.е. расстояние равно полуторной длине модуля с учетом длины соединительных трубок между модулями (фиг. 3). С помощью той же системы управления меняют и давление нагнетаемой среды путем регулирования переменного напряжения.

Оба образованных таким образом потока, один из которых выходит из трубки 21С, а другой из трубки 19С, соединяют на выходе в общей выходной трубе (не показана) в суммарный.

Перистальтический насос текучих сред на пьезоэлектрических элементах может быть использован и на транспорте, и в промышленности, и в сельском хозяйстве, и в быту при перекачивании жидкостей с высоким напором и относительно небольшой подачей, где по массогабаритным показателям и показателям эффективности использование насосов других типов затруднено.


ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС НА ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ
ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС НА ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ
ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС НА ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ
ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС НА ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 281.
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df8

Способ обработки функции автокорреляции для измерения основного тона речевого сигнала

Изобретение относится к средствам обработки функции автокорреляции для измерения основного тона речевого сигнала и может быть использовано в области обработки сигналов, в системах распознавания речи. Технический результат заключается в повышении надежности измерения частоты основного тона...
Тип: Изобретение
Номер охранного документа: 0002559710
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7203

Бесконтактный радиоволновый способ измерения частоты вращения

Изобретение относится к измерительной технике, представляет собой бесконтактный радиоволновый способ измерения частоты вращения и может быть использовано для высокоточного определения частоты вращения. При реализации способа в сторону объекта вращения по нормали к его оси вращения излучают...
Тип: Изобретение
Номер охранного документа: 0002560757
Дата охранного документа: 20.08.2015
10.10.2015
№216.013.81c9

Сверхвысокочастотный способ определения плотности древесины

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн...
Тип: Изобретение
Номер охранного документа: 0002564822
Дата охранного документа: 10.10.2015
10.11.2015
№216.013.8bfa

Способ цифрового измерения электрических величин

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый...
Тип: Изобретение
Номер охранного документа: 0002567441
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bfc

Бесконтактное радиоволновое устройство для измерения частоты вращения

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения частоты вращения. Бесконтактное радиоволновое устройство измерения частоты вращения, содержащее генератор электромагнитных волн фиксированной частоты, направленный ответвитель, циркулятор,...
Тип: Изобретение
Номер охранного документа: 0002567443
Дата охранного документа: 10.11.2015
Показаны записи 81-90 из 202.
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df8

Способ обработки функции автокорреляции для измерения основного тона речевого сигнала

Изобретение относится к средствам обработки функции автокорреляции для измерения основного тона речевого сигнала и может быть использовано в области обработки сигналов, в системах распознавания речи. Технический результат заключается в повышении надежности измерения частоты основного тона...
Тип: Изобретение
Номер охранного документа: 0002559710
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7203

Бесконтактный радиоволновый способ измерения частоты вращения

Изобретение относится к измерительной технике, представляет собой бесконтактный радиоволновый способ измерения частоты вращения и может быть использовано для высокоточного определения частоты вращения. При реализации способа в сторону объекта вращения по нормали к его оси вращения излучают...
Тип: Изобретение
Номер охранного документа: 0002560757
Дата охранного документа: 20.08.2015
10.10.2015
№216.013.81c9

Сверхвысокочастотный способ определения плотности древесины

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн...
Тип: Изобретение
Номер охранного документа: 0002564822
Дата охранного документа: 10.10.2015
10.11.2015
№216.013.8bfa

Способ цифрового измерения электрических величин

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый...
Тип: Изобретение
Номер охранного документа: 0002567441
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bfc

Бесконтактное радиоволновое устройство для измерения частоты вращения

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения частоты вращения. Бесконтактное радиоволновое устройство измерения частоты вращения, содержащее генератор электромагнитных волн фиксированной частоты, направленный ответвитель, циркулятор,...
Тип: Изобретение
Номер охранного документа: 0002567443
Дата охранного документа: 10.11.2015
+ добавить свой РИД