×
04.04.2018
218.016.2f1b

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух. При реализации способа поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец. При этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов. Технический результат изобретения – измерение поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения. 1 ил.

Изобретение относится к областям промышленности и научных исследований, где требуется проведение оптических, бесконтактных, непрерывных измерений толщин прозрачного слоя вещества. Предполагается использование способа для измерения поля толщины прозрачной наледи в ветроэнергетике при контроле обледенения лопастей ветрогенератора.

Известен способ и устройство для дистанционного измерения толщины листа или слоя (патент СА 2179847, B64D 15/20, G01B 11/06, 1996 г.), при котором направляют когерентный пучок света в область на слое таким образом, чтобы луч претерпевал частичное отражение от верхней части слоя и частичное отражение от нижней части слоя или подстилающей поверхности. Благодаря когерентности пучка воспроизводятся две спекл-структуры, которые приводят к возникновению интерференционной картины, имеющей интерференционные полосы. Изменения в спекл-структуре, вызванные сдвигом в поле зрения или сдвигом, определяемым числом проходящих интерференционных полос, используются для определения толщины слоя.

Недостатки способа:

1) требует использования сложного дополнительного оборудования (систему призм);

2) способ позволяет проводить измерение только неподвижного слоя в одной точке;

3) погрешность зависит от наклона измеряемого слоя, от погрешности установки угла лазера и камеры. На погрешность измерения сильно влияет шероховатость измеряемого слоя, и в случае большой шероховатости метод требует осреднения результата по нескольким измерениям.

Известен способ и устройство для удаленного детектирования и измерения толщины слоя твердого или жидкого материала (патент US 5541733, B64F 5/00; G01B 11/06, 1996 г.), который предназначен для обнаружения и оценки толщины скопившегося твердого вещества, то есть льда, или жидкости на твердой поверхности. Устройство содержит источник излучения с узким пучком и средство для удаленной оценки размера световой области, созданной на твердой поверхности пучком излучения. Способ основывается на измерении размеров световой области и определении толщины любого образовавшегося слоя, если он достаточно прозрачный, с использованием формулы, которая использует зависимость размера световой области от толщины слоя и показатель преломления среды. Выбор между льдом и жидкостью осуществляется путем оценки регулярности освещения в световой области. Недостатки данного способа:

1) способ не позволяет проводить измерения подвижного слоя;

2) высокая погрешность измерения.

Наиболее близким по технической сущности заявляемому способу является способ измерения мгновенного поля толщины прозрачной пленки (патент РФ №2506537, G01B 11/06, 2012 г.), который включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую компьютерную обработку отраженного света. В способе источник света помещают над пленкой или под пленкой, от которого образуются лучи света, направленные под углами, меньшими предельного угла отражения на границе пленка-воздух и большими предельного угла отражения на границе пленка-воздух, а затем фиксируют изображение искаженного светового пятна, образованного на твердой поверхности под пленкой в результате полного внутреннего отражения света на границе раздела пленка-воздух, на видеокамеру, обрабатывают на компьютере, измеряют геометрические размеры светового пятна.

Недостатками данного способа являются:

1) сложность реализации способа, т.к. необходимо для каждого измерения создавать систему источников света под поверхностью или над поверхностью, что является проблематичным при измерении наледи на лопастях ветрогенератора;

2) расчет толщины наледи на лопасти ветрогенератора в конкретной точке лопасти таким способом справедлив только при условии, что луч лазера падает на лопасть вертикально, в противном случае измеренное значение толщины наледи не будет соответствовать месту падения луча лазера на границу раздела воздух-наледь. С увеличением отклонения падения луча лазера от вертикали указанное несоответствие будет увеличиваться и будет давать значительный вклад в погрешность измерения. Кроме того, измерение толщины наледи таким способом не позволяет однозначно привязать измеренную толщину к конкретной точке на лопасти.

Задачей изобретения является создание простого способа измерения поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения.

Поставленная задача решается тем, что в оптическом способе измерения поля толщины прозрачной наледи на лопастях ветрогенератора, при котором прозрачную наледь освещают, фиксируют на видеокамеру изображение искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух, производят компьютерную обработку отраженного света, согласно изобретению поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество искаженных световых колец, при этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов.

Наличие поверхности со светоотражающими элементами упрощает процесс измерения толщины наледи, а наличие модуля синхронизации с движущейся поверхностью и модуля накопления и фазового осреднения результатов позволяет накапливать результаты измерения в точке на поверхности, тем самым уменьшая погрешность измерения.

Располагают светоотражающие элементы равномерно по всей поверхности лопасти, причем их количество должно быть максимальным. Расстояние между светоотражающими элементами выбирается таким образом, чтобы при увеличении толщины наледи на лопасти изображения световых колец не пересекались. Есть формула для измерения толщины (в соответствии с прототипом):

h=(D-d)/4tg(arcsin(n1/n2)),

где h - толщина наледи, D - диаметр светового кольца, d - диаметр светоотражающего элемента, n1 - показатель преломления воздуха, n2 - показатель преломления льда. Если максимальная допустимая толщина наледи, которую нужно измерить, hmax, то расстояние, на которое стоит отнести светоотражающие элементы, должно удовлетворять неравенству:

Dmax≥8hmax⋅tg(arcsin(n1/n2)+2d.

Например, если максимальная измеряемая толщина наледи не должна превышать hmax=5 мм, диаметр светоотражающего элемента d=0,1 мм, то расстояние между светоотражающими элементами должно быть не менее 45,8 мм.

В качестве светоотражающих элементов используют либо нанесенную через трафарет краску с измельченными кусочками стекла или металла, либо маленькие зеркала. Размер светоотражающих элементов составляет 0,05-0,5 мм.

На фиг. 1 представлена блок-схема оптического устройства для измерения поля толщины прозрачной наледи на лопастях ветрогенератора, где:

1 - статор;

2 - ротор;

3 - осветитель;

4 - модуль оптического детектирования;

5 - модуль синхронизации с движущейся поверхностью;

6 - модуль измерения толщины наледи;

7 - модуль накопления и фазового осреднения результатов.

Способ осуществляется следующим образом.

Поверхность лопастей ротора 2, установленного на статор 1, покрывают множеством светоотражающих элементов, положение на лопасти каждого из них четко задано. Поверхность, покрытую прозрачной наледью, освещают осветителем 3, запускаемым по синхросигналу от модуля синхронизации с движущейся поверхностью 5. На поверхности образуются световые пятна, служащие источниками света на поверхности. В результате полного внутреннего отражения света на границе раздела наледь-воздух на поверхности под наледью возникают изображения искаженных световых колец. Изображение каждого светового кольца фиксируется модулем оптического детектирования 4. Затем изображения световых колец обрабатывают в модуле измерения толщины наледи 6. По геометрическим размерам светового кольца определяется мгновенная толщина наледи в зоне измерения. Модуль синхронизации с движущейся поверхностью 5 определяет текущее фазовое положение ротора 2 ветрогенератора и подает синхронизирующий сигнал на осветитель 3, модуль оптического детектирования 4 и модуль измерения толщины наледи 6. Модуль измерения толщины наледи 6 принимает изображения от модуля оптического детектирования 4 и сигнал модуля синхронизации с движущейся поверхностью 5. Модуль накопления и фазового осреднения результатов 7 синхронно принимает сигнал от модуля измерения толщины наледи 6, кодирующий значение толщины наледи, и сигнал от модуля синхронизации с движущейся поверхностью 5, кодирующий фазовое смещение ротора. Каждое измерение толщины однозначно привязывается к точке лопасти, где расположен светоотражающий элемент. По измеренным толщинам наледи на лопасти производится интерполяция. Измеряя геометрические размеры последовательных изображений световых колец, получают информацию об изменении поля толщины наледи во времени. Для каждой лопасти ротора происходит накопление и фазовое осреднение поля измеренной толщины наледи. В результате модуль накопления и фазового осреднения результатов 7 формирует информацию о текущей форме наледи на лопасти ротора - зависимость расстояния от верхней кромки наледи до каждой точки профиля лопасти в зависимости от фазового положения ротора. Информация из модуля накопления и фазового осреднения результатов 7 может быть передана на экран оператора и в информационную систему электростанции.

Предлагаемый оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора является бесконтактным, не оказывает воздействия на измеряемую наледь, является дешевым и простым в использовании. Использование заявляемого изобретения обеспечивает возможность прямых непрерывных измерений меняющегося во времени поля толщин прозрачной наледи с низкой погрешностью.

Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора, при котором прозрачную наледь освещают, фиксируют на видеокамеру изображение искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух, производят компьютерную обработку отраженного света, отличающийся тем, что поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец, при этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов.
ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА
ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 96.
20.02.2015
№216.013.2867

Способ использования и утилизации соломы злаковых культур

Изобретение относится к сельскому хозяйству. Способ включает извлечение полезного продукта, преимущественно растворимых биоусвояемых сахаров, и последующую утилизацию лигноцеллюлозных отходов. При извлечении полезного продукта солому злаковых культур подвергают глубокой переработке, а именно:...
Тип: Изобретение
Номер охранного документа: 0002541800
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
Показаны записи 21-30 из 66.
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
+ добавить свой РИД