×
17.02.2018
218.016.2e56

Результат интеллектуальной деятельности: Криогенный гироскоп

Вид РИД

Изобретение

Аннотация: Использование: для производства криогенных гироскопов со сферическим ротором. Сущность изобретения заключается в том, что криогенный гироскоп содержит герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему сверхпроводящих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса, рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре, катушки возбуждения магнитного подвеса, установленные над экранами, схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения, схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих формирующих экранов, на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре. Технический результат: обеспечение возможности повышения точности криогенного гироскопа. 2 ил.

Изобретение относится к прецизионному приборостроению и может быть использовано при разработке и производстве криогенных гироскопов со сферическим ротором, предназначенным для навигационных систем и систем управления движущимися объектами.

Известен криогенный гироскоп (П.И. Малеев. Новые типы гироскопов. // Л.: Судостроение, 1971, с. 46-66), содержащий герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, например, из ниобия, сверхпроводящий магнитный подвес ротора, систему разгона ротора, систему съема информации. Магнитный подвес ротора включает систему сверхпроводящих формирующих экранов, выполненных, например, из ниобия; катушки возбуждения, размещенные на экранах, схему управления подвесом. Экраны установлены в корпусе попарно вдоль осей подвеса с противоположных сторон ротора. Рабочая поверхность каждого из экранов, обращенная к ротору, совместно со сферической поверхностью ротора образует равномерный рабочий зазор. Катушки возбуждения подключены к схеме управления подвесом. Сверхпроводящие формирующие экраны формируют в рабочем зазоре магнитное поле, в котором происходит взвешивание ротора.

Недостатком является низкая точность гироскопа с ротором, имеющим технологические погрешности в виде отклонений его формы от сферической, обусловленных действием сил со стороны подвеса на несферичный ротор, а также моментами от неравномерной плотности распределения этих сил в рабочем зазоре.

Возмущающие моменты, обусловленные технологическими погрешностями изготовления ротора гироскопа рассмотрены в ряде работ (Ю.М. Урман. Уводящие моменты, вызываемые несферичностью ротора, в подвесе с аксиально-симметричным полем. // Изв. АН СССР. Механика твердого тела, 1973, №1, с. 24-31).

Известен криогенный гироскоп (Л.А. Левин. Некоторые вопросы проектирования криогенного неуправляемого сферического сверхпроводящего гироскопа. // ЦНИИ «Румб», 1982, с. 55), содержащий герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, например, из ниобия; сверхпроводящий магнитный подвес ротора; систему разгона ротора, систему съема информации. Магнитный подвес ротора включает систему сверхпроводящих формирующих экранов, выполненных, например, из ниобия, катушки возбуждения, схему управления подвесом. Сверхпроводящие формирующие экраны установлены в корпусе попарно вдоль осей подвеса с противоположных сторон ротора. Для получения равномерного магнитного потока в зазоре подвеса (исключения возмущающего момента, возникающего по причине его неравномерного распределения) рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, профилирована. Ей придается, например, синусоидальная форма. Профилированная поверхность экрана со сферической поверхностью ротора образуют переменный зазор, в котором равномерно распределяется магнитный поток, равномерно распределяются силы, действующие со стороны подвеса. Катушки возбуждения подключены к схеме управления подвесом.

Недостатком является низкая точность гироскопа с ротором, имеющим технологические погрешности в виде отклонений его формы от сферической, обусловленные действием сил со стороны подвеса на несферичный ротор.

Известен также криогенный гироскоп (патент РФ №1840511), который принимаем за прототип. Данный гироскоп содержит герметичный корпус; сферический ротор; выполненный из сверхпроводящего материала, например, из ниобия; комбинированный подвес ротора, состоящий из сверхпроводящего магнитного и электростатического подвесов. Комбинированный подвес применен для снижения возмущающего момента, действующего при работе сверхпроводящего магнитного и электростатического подвесов на несферичный ротор. Сущность физических явлений, поясняющих возможность снижения возмущающего момента в гироскопе с таким ротором, состоит в том, что при совместной работе магнитного сверхпроводящего и электростатического подвесов силы диамагнитного отталкивания сверхпроводящего подвеса и силы притяжения электростатического подвеса прикладываются к одним и тем же точкам ротора, направлены по нормали к поверхности ротора и имеют противоположные знаки. В идеальном случае при совместном применении подвесов с равной плотностью сил происходит взаимная компенсация моментов, действующих на несферический ротор, образованных силами взвешивания. Комбинированный подвес включает систему сверхпроводящих формирующих экранов, изготовленных, например, из ниобия. Сверхпроводящие формирующие экраны установлены в корпусе попарно вдоль осей подвеса с противоположных сторон ротора. Рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре. На сверхпроводящих экранах установлены катушки возбуждения. Сверхпроводящие формирующие экраны и катушки возбуждения подключены к схеме управления магнитным подвесом и к схеме управления электростатическим подвесом ротора и формируют токи, протекающие в катушках возбуждения, и электрический потенциал на поверхности сверхпроводящих формирующих экранов. Схемы содержат элементы управления, позволяющие изменять значения коэффициентов усиления следящих систем электрического и сверхпроводящего магнитного подвесов и значения опорных напряженностей электрического и магнитного полей, обеспечивая равенство сил, прикладываемых к ротору со стороны магнитного и электростатического подвесов.

Недостатком гироскопа является низкая точность. Указанный недостаток обусловлен тем, что при взвешивании несферичного ротора в комбинированном подвесе, состоящем из сверхпроводящего магнитного и электростатического подвесов, не происходит полной взаимной компенсации образованных ими моментов. Причиной является разный тип распределения плотности сил, создаваемых сверхпроводящим магнитным и электростатическим подвесами в профилированном рабочем зазоре. При их совместном функционировании силы, прилагаемые к ротору со стороны магнитного подвеса, равномерно распределены в профилированном рабочем зазоре, а силы, прилагаемые к ротору со стороны электростатического подвеса, распределены в профилированном рабочем зазоре неравномерно. В результате в местах рабочего зазора, где, например, плотность сил со стороны одного типа подвеса превышает плотность сил со стороны другого типа подвеса, полной компенсации моментов не происходит.

Задачей настоящего изобретения является совершенствование конструкции криогенного гироскопа.

Достигаемый технический результат - повышение точности криогенного гироскопа.

Поставленная задача решается тем, что в известном криогенном гироскопе, содержащем:

- герметичный корпус;

- сферический ротор, выполненный из сверхпроводящего материала;

- комбинированный подвес ротора, включающий систему сверхпроводящих формирующих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса; при этом рабочая поверхность каждого из сверхпроводящих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре;

- катушки возбуждения магнитного подвеса, установленные над экранами;

- схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения;

- схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих формирующих экранов, на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре.

Сущность изобретения поясняется фиг. 1 и 2.

На фиг. 1 изображена упрощенная функциональная схема гироскопа.

На фиг. 2 изображена конструкция предлагаемого составного экрана и показано распределение силовых линий магнитного и электростатического полей в рабочем зазоре.

Условные обозначения, принятые на чертежах:

1 - сверхпроводящий ротор гироскопа (далее - ротор);

2 - система сверхпроводящих формирующих экранов;

3 - рабочая профилированная поверхность сверхпроводящего экрана 2 (далее - рабочая поверхность);

4 - дополнительный экран;

5 - рабочая поверхность дополнительного экрана 4;

6 - катушки возбуждения сверхпроводящего магнитного подвеса (далее - катушки возбуждения);

7 - измеритель положения ротора 1 в рабочем зазоре Δ1, выполненный, например, на емкостном принципе (далее - измеритель);

8 - схема управления магнитным подвесом ротора 1;

9 - схема управления электростатическим подвесом ротора 1;

10, 12 - регуляторы коэффициентов усиления электростатического и сверхпроводящего магнитного подвесов (далее - регуляторы);

11, 13 - преобразователи, управляющие соответственно токами в катушках 6 и электрическими потенциалами на рабочей поверхности 5 дополнительных экранов 4 (далее - преобразователи);

14, 15 - устройства, формирующие опорные напряженности магнитного и электрического полей (далее - устройства);

16, 17 - силовые линии электрического и магнитного полей;

XX - ось симметрии подвеса (далее - ось симметрии).

Предлагаемый гироскоп (фиг. 1) содержит:

герметичный корпус (на рисунке не показан); сферический ротор 1, выполненный из сверхпроводящего материала, например, ниобия; комбинированный подвес ротора 1, состоящий из сверхпроводящего магнитного и электростатического подвесов (на фиг. 1 показан только один из каналов комбинированного подвеса; взвешивание ротора 1 в трехкоординатном подвесе может быть осуществлено с помощью трех аналогичных каналов). Комбинированный подвес включает систему сверхпроводящих формирующих экранов 2, выполненных, например, из ниобия, установленных в корпусе попарно вдоль осей симметрии подвеса с противоположных сторон ротора 1. Рабочая поверхность 3 (фиг. 2) каждого из сверхпроводящих формирующих экранов 2, обращенная к ротору 1, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора 1 переменный зазор Δx, в котором происходит равномерное распределение плотности магнитного потока и равномерное распределение плотности сил магнитного подвеса, направленных по нормали к поверхности ротора. Переменный зазор Δx между ротором 1 и сверхпроводящим формирующим экраном 2 выполняется таким образом, чтобы площадь сечения зазора для прохождения магнитного потока 17 была постоянной. Форма переменного зазора Δx определяется, например, из соотношения (фиг. 2):

,

где Rp - радиус ротора 1;

Θx - угол между осью симметрии XX и направлением радиус-вектора в точке измерения переменного зазора;

S - площадь сечения переменного зазора.

Данное соотношение получено при рассмотрении геометрии зазора, исходя из постоянства сечения зазора между формирующим экраном 2 и ротором 1, после простейших преобразований с использованием значения угла между осью симметрии XX и направлением радиус-вектора из центра ротора 1 в заданную точку сверхпроводящего формирующего экрана 2.

На профилированную рабочую поверхность 3 сверхпроводящего формирующего экрана 2 установлен дополнительный экран 4, имеющий электрический контакт со сверхпроводящим формирующим экраном 2 и выполненный из материала, не обладающего сверхпроводящими свойствами и не препятствующего прохождению через него магнитного потока, например, из титана. Рабочая поверхность 5 дополнительного экрана 4 выполнена в виде части сферы и образует со сферической поверхностью ротора 1 равномерный рабочий зазор Δ1, что обеспечивает равномерность распределения плотности электрических сил в зазоре, направленных по нормали к поверхности ротора. Форма рабочего зазора Δ1 определяется соотношением:

Δ1=R1-Rp,

где R1 - радиус дополнительного экрана 4;

Rp - радиус ротора 1.

Катушки 6 возбуждения сверхпроводящего магнитного подвеса, установленные над сверхпроводящими формирующими экранами 2, измеритель 7 положения ротора 1 в рабочем зазоре Δ1; схему 8 управления сверхпроводящим магнитным подвесом, формирующую токи, протекающие в катушках 6 возбуждения, схему 9 управления электростатическим подвесом, формирующую электрический потенциал на рабочей поверхности 5 дополнительного экрана 4. Схемы содержат элементы управления 10, 12, позволяющие изменять значения коэффициентов усиления следящих систем электрического и сверхпроводящего магнитного подвесов и элементы управления 14, 15, позволяющие изменять значения опорных напряженностей электрического и магнитного полей, обеспечивая равенство сил, прикладываемых к ротору со стороны магнитного и электростатического подвесов.

Работа устройства происходит следующим образом.

Гироскоп охлаждают до температуры на несколько градусов выше температуры перехода элементов со сверхпроводимостью в сверхпроводящее состояние. Осуществляют взвешивание ротора 1 в электростатическом подвесе. При подаче питания на электростатический подвес положение ротора 1 относительно дополнительных экранов 4 регистрируется измерителем 7 положения ротора 1, сигнал с которого через регулятор 10 поступает на преобразователь 11 и далее в виде высокого электрического потенциала - на верхний сверхпроводящий формирующий экран 2, имеющий электрическую связь с дополнительным экраном 4. При этом на рабочей поверхности 5 дополнительного экрана 4 образуется потенциал, под действием которого формируются электростатические силы подвеса. Благодаря равномерному рабочему зазору Δ1 силы, прикладываемые к ротору 1, формируются с равномерной плотностью. Под действием электростатических сил, работающих на притяжение, ротор 1 взвешивается и в дальнейшем сохраняет взвешенное состояние за счет автоматического управления потенциалами верхнего и нижнего дополнительных экранов 4 с помощью системы, включающей измеритель 7 положения ротора 1, регулятор 10 и преобразователь 11. При смещении ротора 1 вниз, например, под действием ускорений, увеличивается потенциал на поверхности верхнего дополнительного экрана 4, т.е. увеличивается напряженность электрического поля в рабочем зазоре Δ1, а следовательно, и сила притяжения ротора 1 к верхнему дополнительному экрану 4, под действием которой ротор 1 стремится в положение, близкое к центральному. Электрический потенциал на поверхности 5 нижнего дополнительного экрана 4 при этом уменьшается. При отсутствии действующего ускорения, в том числе и ускорения силы тяжести, ротор 1 занимает центральное положение, а потенциалы на поверхности дополнительных экранов 4 одинаковы и принимают значение, равное опорному, например, половине потенциала, определяющего электрический пробой рабочего зазора Δ1.

Приводят ротор 1 во вращение. Вращение ротору 1 может быть сообщено с помощью разгонного устройства, например, асинхронного двигателя, включаемого после взвешивания ротора 1 в электростатическом подвесе (на фиг. 1 разгонное устройство не показано).

Охлаждают гироскоп до температуры, при которой его сверхпроводящие элементы переходят в сверхпроводящее состояние.

Подают питание в систему управления сверхпроводящим магнитным подвесом. Взвешивают ротор 1 в сверхпроводящем магнитном подвесе. Взвешивание ротора 1 в сверхпроводящем магнитной подвесе осуществляется с помощью системы, включающей измеритель 7 положения ротора, регулятор 12 и преобразователь 13, который управляет величиной токов в катушках возбуждения 6. При этом в рабочем зазоре Δ1 формируется равномерный магнитный поток. При смещениях ротора 1, например, вниз система 8 магнитного взвешивания увеличивает ток в нижней катушке 6 подвеса, т.е. увеличивает напряженность магнитного поля в этой части рабочего зазора Δ1, следовательно, и силу диамагнитного отталкивания, а система 9 управлением напряженностью поля электростатического подвеса уменьшает его. Под действием сил, действующих со стороны сверхпроводящего магнитного и электростатического подвесов, ротор 1 стремится к положению, близкому к центральному. Ток в верхней катушке 6 (фиг. 1) и напряженность магнитного поля в этом случае уменьшаются, напряженность электростатического поля увеличивается. При отсутствии действующего ускорения, в том числе и ускорения силы тяжести, токи в катушках 6 подвеса равны, а напряженности магнитного поля в рабочем зазоре подвеса имеют значение, равное опорному, например, половине критического поля для сверхпроводящего материала ротора 1 и сверхпроводящих формирующих экранов 2. Равны также потенциалы на рабочей поверхности 5 дополнительных экранов 4 и принимают значение, равное опорному, например, половине потенциала, определяющего электрический пробой рабочего зазора Δ1.

Далее обеспечивают равенство сил, действующих на ротор 1 со стороны магнитного и электростатического подвесов. Осуществляют регулирование системы взвешивания. Регулирование системы взвешивания ротора 1 включает установление коэффициентов усиления электростатического и магнитного подвесов с помощью устройств 10 и 12 и опорных напряженностей электростатического и магнитного полей в рабочем зазоре с помощью устройств 14 и 15. Равенство сил и их равномерное распределение обеспечивает компенсацию действующих возмущающих моментов.

Точность предлагаемого гироскопа с комбинированным подвесом ротора по сравнению с гироскопом, принятым за прототип, повышается. Повышение точности обусловлено исключением нескомпенсированной части возмущающего момента от неравномерного распределения сил, прикладываемых к несферичному ротору со стороны электростатического подвеса. Равномерность распределения сил электростатического подвеса достигнута благодаря введению дополнительного экрана, не обладающего сверхпроводящими свойствами (не препятствующего прохождению через него магнитного поля), рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор.

Поставленная задача решена.

На предприятии АО «Концерн «ЦНИИ "Электроприбор" разработана техническая документация предлагаемого устройства. Изготовлен и испытан его макет. Получены положительные результаты.

Криогенный гироскоп, содержащий герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему сверхпроводящих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса, рабочая поверхность каждого из сверхпроводящих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре, катушки возбуждения магнитного подвеса, установленные над сверхпроводящими формирующими экранами, схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения, схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих экранов, отличающийся тем, что на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре.
Криогенный гироскоп
Криогенный гироскоп
Криогенный гироскоп
Источник поступления информации: Роспатент

Показаны записи 301-310 из 379.
01.03.2019
№219.016.d0ce

Катализатор прямого синтеза триэтоксисилана и способ его получения

Изобретение относится к химии кремнийорганических соединений, а именно к разработке эффективного медьсодержащего катализатора, применяемого для прямого синтеза триэтоксисилана из металлургического кремния и этилового спирта, а также способу получения такого катализатора. Описан катализатор...
Тип: Изобретение
Номер охранного документа: 0002468865
Дата охранного документа: 10.12.2012
08.03.2019
№219.016.d559

Способ определения коэффициента передачи гидрофонного тракта в натурных условиях и гидрофонный тракт для его реализации

Изобретение относится к гидроакустике. Техническим результатом изобретения является обеспечение возможности определения коэффициента передачи гидрофонного тракта в натурных условиях. Гидрофонный тракт для реализации способа содержит пьезочувствительный элемент, усилитель, блок обработки и...
Тип: Изобретение
Номер охранного документа: 0002450479
Дата охранного документа: 10.05.2012
08.03.2019
№219.016.d583

Устройство для стерилизации консервов

Изобретение относится к пищевой промышленности. Устройство содержит по меньшей мере один автоклав, подключенный к магистралям подачи и слива процессной воды, систему оборотного водоснабжения, содержащую блок очистки воды, соединенный с магистралью слива процессной воды, блок ультрафиолетового...
Тип: Изобретение
Номер охранного документа: 0002437586
Дата охранного документа: 27.12.2011
08.03.2019
№219.016.d593

Устройство прогнозирования и анализа обстановки для группы подвижных объектов

Изобретение относится к устройству прогнозирования и анализа обстановки для группы подвижных объектов. Техническим результатом является расширение функциональных возможностей за счет возможности прогнозирования состояния и взаимного положения каждого подвижного объекта группы в определенный...
Тип: Изобретение
Номер охранного документа: 0002447476
Дата охранного документа: 10.04.2012
11.03.2019
№219.016.dbce

Многослойный полимерно-текстильный материал и способ его получения

Изобретение относится к производству пластмасс и может быть использовано для изготовления герметичных надувных изделий. Материал в качестве текстильной основы содержит полиэфирную ткань, на поверхность которой вакуумным напылением осажден сплав, содержащий, мас.%: 68,2 Fe, 2,0 Mn, 11,6 Ni, 17,5...
Тип: Изобретение
Номер охранного документа: 0002453442
Дата охранного документа: 20.06.2012
11.03.2019
№219.016.dcc3

Система автоматического управления многофункциональным энергетическим комплексом

Использование: в области электротехники. Технический результат заключается в обеспечении гарантированного бесперебойного энергоснабжения пассивной нагрузки. Система содержит разнородные источники питания и накопитель электроэнергии, выходы которых через преобразователи ac-dc (ac-dc-ac)...
Тип: Изобретение
Номер охранного документа: 0002432659
Дата охранного документа: 27.10.2011
15.03.2019
№219.016.e122

Палладированные нанотрубки для гидрирования растительных масел, способ их приготовления и способ жидкофазного гидрирования

Изобретение относится к катализаторам гидрирования растительных масел и жиров. Описан палладиевый катализатор, нанесенный на углеродный носитель, для жидкофазного гидрирования растительных масел и жиров, характризующийся тем, что в качестве углеродного носителя он содержит углеродные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002438776
Дата охранного документа: 10.01.2012
15.03.2019
№219.016.e15a

Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности. Описан...
Тип: Изобретение
Номер охранного документа: 0002468864
Дата охранного документа: 10.12.2012
20.03.2019
№219.016.e56c

Способ определения диагностических параметров разряда емкостных систем зажигания

Изобретение относится к области измерительной техники, а именно к методам диагностики параметров разрядов, генерируемых емкостными системами зажигания, применяемыми в авиационных двигателях и им подобных объектах. Способ определения диагностических параметров разряда емкостных систем зажигания,...
Тип: Изобретение
Номер охранного документа: 0002394170
Дата охранного документа: 10.07.2010
20.03.2019
№219.016.e813

Смазочная композиция универсального синтетического масла, работоспособного в газотурбинных двигателях и редукторах вертолетов, а также турбовинтовых двигателях и турбовинтовентиляторных двигателях самолетов

Настоящее изобретение относится к смазочной композиции универсального синтетического масла, работоспособного в газотурбинных двигателях и турбиновинтовентиляторных двигателях, включающей в качестве базовой основы авиационный пентаэритритовый эфир на основе смеси полных сложных эфиров...
Тип: Изобретение
Номер охранного документа: 0002452767
Дата охранного документа: 10.06.2012
Показаны записи 291-298 из 298.
07.02.2019
№219.016.b7e1

Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), измерительный модуль (блок чувствительных элементов -БЧЭ) которых содержит электростатические гироскопы (ЭСГ)....
Тип: Изобретение
Номер охранного документа: 0002678959
Дата охранного документа: 04.02.2019
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
04.06.2019
№219.017.733f

Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа

Изобретение относится к измерительной технике и может быть использовано при изготовлении прецизионных приборов на газодинамической опоре. Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа включает определение времени выбега ротора на последовательных этапах...
Тип: Изобретение
Номер охранного документа: 0002690231
Дата охранного документа: 31.05.2019
05.02.2020
№220.017.fe0f

Способ управления электростатическим подвесом инерционной массы

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке электростатического подвеса инерционной массы чувствительных элементов инерциальных систем. Способ управления электростатическим подвесом инерционной массы дополнительно содержит этапы, на...
Тип: Изобретение
Номер охранного документа: 0002712993
Дата охранного документа: 03.02.2020
21.06.2020
№220.018.288c

Устройство крепления и отделения малого объекта (буя) от высокоскоростного подводного объекта

Изобретение относится к устройствам крепления и отделения малых объектов, в частности буев, от высокоскоростного подводного объекта. Устройство крепления и отделения малого объекта - буя от высокоскоростного подводного объекта (ПО) содержит герметичный корпус, который может быть объединен с...
Тип: Изобретение
Номер охранного документа: 0002723998
Дата охранного документа: 18.06.2020
01.06.2023
№223.018.7518

Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесом ротора электростатического гироскопа (ЭСГ), используемого для высокоточных измерений навигационных параметров подвижных объектов. В способе управления подвесом ротора ЭСГ парируют воздействие на ротор...
Тип: Изобретение
Номер охранного документа: 0002746313
Дата охранного документа: 12.04.2021
+ добавить свой РИД