×
17.02.2018
218.016.2e14

Результат интеллектуальной деятельности: СИСТЕМА КОРРЕКТИРОВКИ ТРАЕКТОРИЙ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ускорительной техники, физике плазмы, а именно к устройствам корректировки траекторий потоков заряженных частиц, и может быть использовано в атомной физике, медицине, химии, физике твердого тела. Система корректировки траекторий потока заряженных частиц содержит электрически связанные между собой генератор высоковольтных импульсов, линии, обеспечивающие формирование магнитного поля на пути потока частиц, средство передачи высоковольтного импульса от генератора высоковольтных импульсов к линиям, обеспечивающим формирование магнитного поля на пути потока частиц. В предложенной системе линии, обеспечивающие формирование магнитного поля на пути потока частиц, образуют токовую петлю с волновым сопротивлением ρ, при этом формирующие линии электрически связаны с управляемым разрядником, соединенным с передающими линиями и далее с токовой петлей. Технический результат – обеспечение компактности устройства и исключение внесения искажений в энергетический спектр потока заряженных частиц. 1 ил.

Изобретение относится к области ускорительной техники, физике плазмы, а именно к устройствам корректировки траекторий потоков заряженных частиц, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой длительностью.

Известно устройство (В.А. Москаев, В.Л. Чахлов. Бетатроны. Томский политехнический университет, 2009 г., стр. 22 [1]), предназначенное для отклонения электронного пучка (потока заряженных частиц) посредством воздействия на него электрического поля, создаваемого специальным приспособлением, называемым дефлектором. Дефлектор представляет собой цилиндрический конденсатор, который размещается на пути распространения электронного потока. Параметры дефлектора определяются из условия движения электронов по круговым орбитам в электрическом поле цилиндрического конденсатора.

Недостатком такого дефлектора является то, что при движении по круговой орбите в цилиндрическом конденсаторе центростремительной силой является сила электростатического взаимодействия, определяемая из уравнения: , где r - радиус круговой орбиты, - скорость электронов, - напряженность электрического поля цилиндрического конденсатора, eU1 - энергия электронов, - напряжение на дефлекторе, R1 и R2 - радиусы цилиндрического конденсатора.

Отсюда следует, что ,

Значит, напряжение на дефлекторе должно быть того же порядка, что и напряжение на ускоряющем зазоре ускорителя, создающего поток электронов, а это, как правило, большие величины, что приводит к очень большим размерам цилиндрического конденсатора.

Наиболее близким к заявленному устройству является дефлектор (В.А. Москаев, В.Л. Чахлов. Бетатроны. Томский политехнический университет, 2009 г., стр. 90-95 [2]). Он состоит из двух автономных верхней и нижней пары короткозамкнутых линий; линии разделены изолятором и электрически соединены между собой. Дефлектор расположен на пути движения электронного пучка (потока заряженных частиц). То есть короткозамкнутые линии обеспечивают формирование магнитного поля на пути потока частиц. Создаваемое дефлектором магнитное поле сообщает заряженным частицам поперечный импульс, под действием которого происходит отклонение потока электронов. Для питания дефлектора используется генератор высоковольтных импульсов с амплитудой 100 кВ и длительностью 10 нс. В качестве средства передачи высоковольтного импульса от генератора к короткозамкнутым линиям использованы шины линий дефлектора.

Основными недостатками данной системы являются:

1. Использование изолятора большой толщины, поскольку для создания магнитного поля используется высоковольтный импульс, а в присутствии рассеянных электронов пучка резко понижается электропрочность изолирующей поверхности, что приводит к увеличению размеров самого изолятора, следствием чего является существенное увеличение габаритов системы.

2. Дефлектор запитывается от специального высоковольтного генератора (генератор высоковольтных импульсов с амплитудой 100 кВ и длительностью 10 нс - довольно сложное устройство больших размеров), что усложняет систему.

3. Между проводниками дефлектора при движении электромагнитной волны возникает достаточно длительный импульс высокого напряжения , где l - длина линий, что вносит искажения в спектральные свойства электронного потока.

Техническая проблема состоит в создании малогабаритной системы, позволяющей изменять траектории потока заряженных частиц без изменения его энергии.

Технический результат заключается в обеспечении компактности устройства при простоте исполнения и, кроме того, исключении внесения искажений в энергетический спектр потока заряженных частиц.

Технический результат достигается тем, что в отличие от известной системы корректировки траекторий потока заряженных частиц, включающей электрически связанные между собой генератор высоковольтных импульсов, линии, обеспечивающие формирование магнитного поля на пути потока частиц, средство передачи высоковольтного импульса от генератора высоковольтных импульсов к линиям, обеспечивающим формирование магнитного поля на пути потока частиц, в предложенной системе линии, обеспечивающие формирование магнитного поля на пути потока частиц, образуют токовую петлю с волновым сопротивлением ρ, средство передачи высоковольтного импульса от генератора высоковольтных импульсов выполнено в виде передающих линий, каждая из которых имеет волновое сопротивление ρ, равное волновому сопротивлению токовой петли, генератор высоковольтных импульсов построен на формирующих линиях с общим волновым сопротивлением и образован соединенными с внешним статическим источником питания n формирующими линиями, причем волновое сопротивление каждой формирующей линии равно , при этом формирующие линии электрически связаны с управляемым разрядником, соединенным с передающими линиями и далее с токовой петлей.

В основе технического решения лежит идея передачи в системе заявляемого типа электрического импульса от генератора высоковольтных импульсов к токовой петле без отражений, при этом токовая петля не оказывается под высоким напряжением. А это в свою очередь позволяет размещать ее вблизи проводящих элементов соответствующей электрофизической установки, следствием чего является упрощение конструкции системы и обеспечение ее компактности, что, кроме того, исключает внесение искажений в энергетический спектр потока заряженных частиц.

Использование в составе системы генератора высоковольтных импульсов на формирующих линиях с общим волновым сопротивлением , при выполнении его в виде соединенных с внешним статическим источником питания n формирующих линий, каждая с волновым сопротивлением , в сочетании с тем, что линии, обеспечивающие формирование магнитного поля на пути потока частиц, образуют токовую петлю с волновым сопротивлением ρ и обеспечена электрическая связь формирующих линий с управляемым разрядником, соединенным с передающими линиями и далее с токовой петлей с тем же волновым сопротивлением ρ (однородные линии) - все это позволяет отказаться от имеющих место в прототипе специального сложного и громоздкого генератора и изолятора, габаритных автономных короткозамкнутых линий, обеспечивающих формирование магнитного поля на пути потока частиц, и шин в качестве средства передачи высоковольтного импульса, следствием чего является упрощение системы и ее компактность. При этом, так как электроды токовой петли, выполненные из проводников, большую часть длительности импульса оказываются под одним потенциалом, отсутствует влияние искажений на энергетические характеристики заряженных частиц.

Таким образом, исполнение системы корректировки потока заряженных частиц на однородных линиях и с соответствующими волновыми сопротивлениями приводит к достижению технического результата, заключающегося в обеспечении компактности устройства при простоте исполнения и, кроме того, исключении внесения искажений в энергетический спектр потока заряженных частиц.

На фиг. представлена система корректировки траекторий потока заряженных частиц ускорительной установки, где

1 - формирующая линия;

2 - управляемый разрядник;

3 - передающие линии;

4 - токовая петля;

5 - внешний статический источник питания.

В реализованной системе корректировки траекторий, в частности, электронного пучка, пара формирующих линий 1 (n=2), подключенных к внешнему источнику статического напряжения, электрически связана с управляемым разрядником 2, составляя генератор высоковольтных импульсов; две передающие линии 3 с одной стороны подсоединены к паре формирующих линий генератора высоковольтных импульсов, а с другой стороны к токовой петле 4.

Устройство работает следующим образом.

Однородная формирующая линия 1 с волновым сопротивлением и электрической длиной l, равной длительности отклоняемого электронного пучка, заряжается от внешнего статического источника питания 5 до напряжения U0. В определенное время срабатывает управляемый разрядник 2, запуск которого синхронизован с началом генерации электронного потока, и по передающим линиям 3, каждая из которых имеет волновое сопротивление ρ, распространяется импульс напряжения величиной , где U0 – напряжение, до которого генератор заряжает формирующую линию, с длительностью , где l - длина формирующей линии, v - скорость волны в формирующих и передающих линиях. Когда импульсы с двух передающих линии 3, имеющие противоположные величины напряжения, достигают токовой петли 4 с волновым сопротивлением ρ, между проводниками, образующими петлю 4, возникает напряжение, равное . Когда импульсы напряжения противоположных знаков встречаются на середине токовой петли 4, их напряжения взаимно гасятся, а токи складываются. В результате по каждому из проводников, образующих токовую петлю, текут токи, создающие магнитное поле, величиной . Двигаясь перпендикулярно силовым линиям этого поля, электроны под действием силы Лоренца отклоняются на угол , где l1 - путь, пройденный электроном в магнитном поле, В - величина индукции магнитного поля, создаваемого токовой петлей.

Система корректировки траекторий электронного пучка в установке выполнена следующим образом. Формирующие и передающие линии выполнены из коаксиального кабеля КВИ-100 с волновым сопротивлением 60 Ом.

Формирующие линии имеют электрическую длительность, равную длительности корректируемого электронного пучка. Каждая из передающих линий имеет волновое сопротивление ρ, равное волновому сопротивлению токовой петли. Токовая петля изготовлена из медной проволоки диаметром 3 мм, ее волновое сопротивление ρ равно 60 Ом. В части, касающейся генератора высоковольтных импульсов, для коммутации формирующей линии с передающими линями использован разрядник РУ-78. Формирующие линии состоят из двух параллельных отрезков кабеля, заряжаемых от стандартного внешнего источника питания Spellman CZE 1000R.

За счет предложенного технического решения обеспечена компактность системы корректировки траектории потоков заряженных частиц без внесения искажении в его энергетический спектр.

Система корректировки траекторий потока заряженных частиц, включающая электрически связанные между собой генератор высоковольтных импульсов, линии, обеспечивающие создание магнитного поля на пути потока частиц, средство передачи высоковольтного импульса от генератора высоковольтных импульсов к линии, обеспечивающей формирование магнитного поля на пути потока частиц, отличающаяся тем, что линии, обеспечивающие создание магнитного поля на пути потока частиц, образуют токовую петлю с волновым сопротивлением ρ, средство передачи высоковольтного импульса от генератора высоковольтных импульсов выполнено в виде передающих линий, каждая из которых имеет волновое сопротивление ρ, равное волновому сопротивлению токовой петли, а генератор высоковольтных импульсов построен на формирующих линиях с общим волновым сопротивлением ρ/2 и образован соединенными с внешним статическим источником питания n формирующими линиями, причем волновое сопротивление каждой формирующей линии равно nρ/2, при этом формирующие линии электрически связаны с управляемым разрядником, соединенным с передающими линиями и далее с токовой петлей.
СИСТЕМА КОРРЕКТИРОВКИ ТРАЕКТОРИЙ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ
СИСТЕМА КОРРЕКТИРОВКИ ТРАЕКТОРИЙ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 361-370 из 797.
12.07.2018
№218.016.7003

Устройство для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений

Изобретение относится к физике высоких давлений, а именно к устройству для определения параметров уравнения состояния вещества, изоэнтропически сжатого до сверхвысоких давлений, и может быть использовано для исследований свойств веществ с малым атомным номером. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002660884
Дата охранного документа: 10.07.2018
12.07.2018
№218.016.700e

Способ подготовки попутных нефтяных и природных газов для использования в энергоустановках

Изобретение раскрывает способ подготовки попутных нефтяных и природных газов для использования в энергоустановках, состоящий в снижении концентрации соединений газа, имеющих низкую детонационную стойкость и повышающих вероятность смоло- и сажеобразования, путем каталитической пароуглекислотной...
Тип: Изобретение
Номер охранного документа: 0002660908
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.70b3

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике, а именно к проходным устройствам для герметичного ввода оптического волокна через перегородку. Переход волоконно-оптический содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе...
Тип: Изобретение
Номер охранного документа: 0002660775
Дата охранного документа: 09.07.2018
21.07.2018
№218.016.72f7

Устройство контроля работы генератора

Изобретение относится к импульсной технике и может быть использовано для повышения надежности цифровых систем транспортных устройств в условиях воздействия механических ударов. Устройство контроля работы генератора содержит основной и резервный генераторы, первый и второй логические элементы,...
Тип: Изобретение
Номер охранного документа: 0002661354
Дата охранного документа: 16.07.2018
24.07.2018
№218.016.73f8

Детонирующее устройство на основе бризантного взрывчатого вещества

Изобретение относится к области взрывных работ, в частности к детонирующим устройствам для взрывных головок кумулятивных перфораторов, спускаемых в нефтяные и газовые скважины на насосно-компрессорных трубах. Устройство включает стальной корпус, в котором последовательно размещены боек,...
Тип: Изобретение
Номер охранного документа: 0002661923
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73fd

Устройство передачи детонации

Изобретение может быть использовано при разработке боеприпасов, военной и космической техники, взрывных устройств для применения в хозяйственной деятельности, научно-исследовательской деятельности, где требуется передача детонационного импульса на необходимое расстояние. Устройство передачи...
Тип: Изобретение
Номер охранного документа: 0002661924
Дата охранного документа: 23.07.2018
28.07.2018
№218.016.76e3

Способ фиксации аэродинамического руля летательного аппарата

Изобретение относится к области летательных аппаратов (ЛА), а именно к способам фиксации рулей от поворота до начала работы рулевых приводов. Способ фиксации аэродинамического руля летательного аппарата включает размещение подпружиненного штока фиксатора в подвижном и неподвижном элементах...
Тип: Изобретение
Номер охранного документа: 0002662718
Дата охранного документа: 27.07.2018
09.08.2018
№218.016.7853

Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров

Изобретение относится к области измерительной техники для исследования параметров многокомпонентных газовых сред и состояния хранящихся в этих газовых средах объектов, являющихся источником опасных газообразных продуктов, и может быть использовано для прогнозирования изменения и оценки...
Тип: Изобретение
Номер охранного документа: 0002663310
Дата охранного документа: 03.08.2018
09.08.2018
№218.016.7877

Юстировочный механизм элементов оптических схем

Изобретение относится к оптическому приборостроению и может быть использовано для юстировки элементов оптических схем, размещенных в корпусе цилиндрической формы, во время сборки. Сущность: юстировочный механизм оптических схем содержит платформу П-образной формы с опорными, юстировочными...
Тип: Изобретение
Номер охранного документа: 0002663274
Дата охранного документа: 03.08.2018
09.08.2018
№218.016.78cc

Способ изготовления пористой детали из проволочного материала

Изобретение может быть использовано при изготовлении фильтрующих и теплообменных элементов из проволочного материала. В пресс-форме размещают заготовку из навитой в спираль проволоки и формируют ее прессованием до получения заготовки с заданной пористостью. В качестве проволочного материала...
Тип: Изобретение
Номер охранного документа: 0002663389
Дата охранного документа: 03.08.2018
Показаны записи 291-292 из 292.
29.05.2019
№219.017.65c7

Сверхвысокочастотный генератор на основе виртуального катода с радиальным пучком

Область техники - генерирование электромагнитных волн на основе колебаний виртуального катода (ВК). Может быть использовано при создании генераторов сверхвысокочастотного (СВЧ) излучения. Сущность изобретения: сверхвысокочастотный генератор на основе виртуального катода с радиальным пучком...
Тип: Изобретение
Номер охранного документа: 0002395132
Дата охранного документа: 20.07.2010
08.11.2019
№219.017.df6e

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к области ускорительной техники, физике плазмы, радиационной физике, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой...
Тип: Изобретение
Номер охранного документа: 0002705207
Дата охранного документа: 06.11.2019
+ добавить свой РИД