×
17.02.2018
218.016.2c2b

Результат интеллектуальной деятельности: РЕЗОРБИРУЕМЫЙ РЕНТГЕНОКОНТРАСТНЫЙ КАЛЬЦИЙ-ФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ КОСТНОЙ ПЛАСТИКИ

Вид РИД

Изобретение

№ охранного документа
0002643337
Дата охранного документа
31.01.2018
Аннотация: Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях. Рентгеноконтрастный инжектируемый кальций-фосфатный цемент для костной пластики содержит в качестве рентгеноконтрастного вещества оксид тантала TaO, дополнительно содержит монокальцийфосфат моногидрат (МКФМ), а в качестве затворяющей жидкости - смесь коллоидной силикатной суспензии (КСС) с полиэтиленгликолем (ПЭГ) при следующем соотношении компонентов, масс. %: сухая смесь: ТКФ - 55,1-62,9%; МКФМ - 29,9-34,1%; TaO - 3-15%; затворяющая жидкость: КСС- 90%, 95%; ПЭГ – 5%, 10%. Технический результат изобретения заключается в упрощении состава рентгеноконтрастного инжектируемого кальций-фосфатного цемента за счет обеспечения оптимальных показателей текучести и рентгеноконтрастности без введения специальных улучшающих добавок при одновременном повышении безопасности применения. 1 табл.

Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях, а также лечения трещин травматического генезиса с визуализацией процессов введения материала и последующего восстановления костной ткани. В травматологии и челюстно-лицевой хирургии в качестве костнозамещающих материалов применяют композиционные кальций-фосфатные цементы, содержащие рентгеноконтрастные вещества (РКВ).

Регенерация костной ткани при использовании кальций-фосфатных цементов происходит благодаря постепенной резорбции ортофосфатов кальция с вовлечением минеральных компонентов в остеогенез. Немаловажными достоинствами таких материалов являются биосовместимость и малая инвазивность при введении их с помощью шприца.

Кальций-фосфатные цементы получают при смешении порошков кислых и основных фосфатов кальция с затворяющей жидкостью. В ходе реакции твердые компоненты растворяются в жидкой фазе и в результате переосаждения формируются нейтральные фосфаты кальция, менее растворимые, чем исходные. Процесс переосаждения сопровождается образованием кристаллов апатитов и наблюдается как переход от пастообразного состояния в твердое, что используется при создании инъекционных составов для остеопластики. По составу апатиты разделяют на монетиты, брушиты и гидроксиапатиты. Гидроксиапатитовые цементы превосходят по прочности, однако монетитовые и брушитовые обладают более высокой кинетикой резорбции. Состав и свойства кальций-фосфатных цементов, в частности, зависят от выбора затворяющей жидкости. Обычно используют воду или буферные водные растворы (например, фосфорную кислоту, лимонную кислоту, фосфаты калия, натрия, магния, гидроксид кальция). Известны примеры использования в качестве затворяющей жидкости коллоидного диоксида кремния в виде суспензии.

Среди широко применяемых в рентгенологической практике рентгеноконтрастных соединений главное место занимают йодсодержащие вещества. Именно их используют для контрастирования сосудистых образований или закрытых полостей. Однако введение этих РКВ сопровождается рядом побочных эффектов. Отмечено их токсическое действие на кровь, почки, печень и щитовидную железу. Наиболее перспективными для рентгенодиагностики являются рентгеноконтрастные соединения тантала. Кроме своей нетоксичности эти РКВ обладают преимуществом - возможностью применения наряду с рентгенодиагностикой компьютерной томографии для исследования процессов биорезорбции, протекающих организме. Для данной методики используется рентгеновское излучение энергии 50-150 кэВ. Следует отметить, танталсодержащие РКВ имеют границу К-поглощения 67,4 кэВ, в то время как йодсодержащие - 30-40 кэВ.

Известен состав кальций-фосфатного цемента (Acta Biomateriala. 2010. Vol. 6. №8. Р. 3199-3207), содержащий в качестве рентгеноконтрастного средства основной салицилат висмута. К недостаткам этого цемента относится токсичность соединений висмута.

Кальций-фосфатный цемент, предложенный в (International Journal of Biomaterials. 2011: 232574), готовится из смеси порошков трикальцийфосфата кальция и монокальцийфосфата моногидрата, в которую после тщательного перемешивания вводится глицерин в качестве пластификатора. Отверждение происходит в присутствии фосфатного буфера при температуре 37°C. Для рентгеноконтрастности используют ZrO2. К недостаткам этого цемента относится то, что оксид циркония в организме не подвергается биодеградации и при миграции частиц ZrO2 в близлежащие к месту введения цемента ткани, особенно суставы, возможны механические повреждения последних из-за высокой твердости частиц.

В заявке на изобретение WO 2014016707, опубл. 30.01.2014, описан инъекционный цемент с рентгеноконтрастными веществами SrBr2 и SrI2. Наряду с резорбируемыми фосфатами кальция он содержит сульфаты и силикаты кальция, а также акрилаты, которые уменьшают биодоступность материала. Также известно, что стронций, являясь тяжелым металлом, представляет опасность для организма, так как способен накапливаться и вызывать тератогенное действие.

Известен состав цемента для остеопластики (US 7553362, опубл. 30.06.2009), в который для рентгеноконтрастности добавлен оксид тантала Ta2O5. Цемент готовится из тетракальцийфосфата, ангидрида дикальцийфосфата и коллоидной силикатной суспензии. Однако в процессе спекания при 1250°C конечным продуктом является нерезорбируемый силикат кальция.

Наиболее близким к заявляемому изобретению по технической сущности является состав костнозамещающего цемента (WO 2004050131, опубл. 17.06.2004) с использованием в качестве рентгеноконтрастного вещества BaSO4. Гидроксиапатитовый цемент получают при смешении порошков фосфатов кальция с затворяющей жидкостью, которой служат водные растворы фосфатов натрия, калия, аммония, магния или их смеси. Получаемый костнозамещающий цемент обеспечивает необходимую прочность, однако инъекционная текучесть композита чувствительна к составу. Только добавка BaSO4 из всех приведенных в этом патенте РКВ улучшает инъекционную текучесть, что, однако, экономически нецелесообразно для достижения оптимальной вязкости состава.

Улучшения рентгеноконтрастных свойств описанного кальций-фосфатного цемента добиваются включением в состав, как минимум, одного вещества, относящегося к неорганическим или органическим соединениям ряда металлов. Кроме того, значение рН при смешении компонентов достигает 12 и медленно уменьшается при переходе из пасты в цементный камень, что приводит к химическому ожогу близлежащих тканей.

Задачей предлагаемого изобретения является создание рентгеноконтрастного инжектируемого костнозамещающего кальций-фосфатного цемента, простого в приготовлении, удобного при введении с минимальной токсичностью для организма.

Технический результат предлагаемого изобретения заключается в упрощении его состава за счет обеспечения оптимальных показателей текучести и рентгеноконтрастности без введения специальных улучшающих добавок при одновременном повышении безопасности его применения.

Указанный технический результат достигают рентгеноконтрастным инжектируемым кальций-фосфатным цементом для костной пластики, содержащим трикальцийфосфат (ТКФ), рентгеноконтрастное вещество и затворяющую жидкость. В отличие от известного, в качестве рентгеноконтрастного вещества цемент содержит оксид тантала Ta2O5, дополнительно содержит монокальцийфосфат моногидрат (МКФМ), а в качестве затворяющей жидкости - смесь коллоидной силикатной суспензии (КСС) с полиэтиленгликолем (ПЭГ) при следующем соотношении компонентов, масс. %:

сухая смесь:

ТКФ 55,1-62,9%
МКФМ 29,9-34,1%
Ta2O5 3-15%

затворяющая жидкость:

КСС 90,95%
ПЭГ 5,10%

Оксид тантала Ta2O5 имеет более высокое К-поглощение по сравнению с BaSO4 и не требует введения улучшающих рентгеноконтрастность веществ, при этом его добавка не сказывается на механических свойствах используемого кальций-фосфатного цемента, такие как прочность конечного продукта, и не влияет на вязкость инъекционной цементной пасты.

Использование коллоидного диоксида кремния в качестве затворяющей жидкости приводит к тому, что реакция переосаждения фосфатов кальция начинается при значениях рН около 9, полностью завершаясь при физиологических значениях рН. Это минимизирует дополнительное травмирование окружающих имплантат тканей организма.

Цемент готовят следующим образом.

Трикальцийфосфат Ca3(PO4)2 и монокальцийфосфат моногидрат Ca(H2PO4)2⋅H2O смешивают в отношении 3:2, добавляют оксид тантала Ta2O5 и затворяющую жидкость, а именно коллоидную силикатную суспензию SIGMA-ALDRICH, в которую добавлен пластификатор полиэтиленгликоль ПЭГ-35(1500). В результате получают цементную пасту. ПЭГ вводят в затворяющую жидкость для свободного прохождения цементной пасты через иглу для инъекций и для пролонгирования сроков ее схватывания. Процесс отверждения происходит при температуре 25°C и 70% относительной влажности. Время схватывания цемента регулируется количеством ПЭГ, а также зависит от количества оксида тантала в смеси компонентов и колеблется от 5 до 20 мин. Время полного затвердевания цемента около трех часов, прочность на сжатие 2-4 МПа. Фазовый состав цемента - гидроксиапатит, брушит, монетит, оксид тантала.

В таблице 1 приведены характеристики кальций-фосфатных цементов в зависимости от количества в образцах оксида тантала, ПЭГ и соотношения твердой и жидкой фаз.

* - верхний предел съемки рентгеноконтрастности вещества.

Костные ткани имеют собственную рентгеноконтрастность, которая в зависимости от формы, строения, функции и развития варьирует в диапазоне от 350 до 1250 Hu. Из таблицы 1 видно, что для визуализации имплантата достаточным является 3% содержание Ta2O5 в цементе, а добавление оксида тантала свыше 15% нецелесообразно по экономическим соображениям.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1 (таблица 1, состав №8). Сухие компоненты 0,5254 г ТКФ; 0,2846 г МКФМ; 0,09 г Ta2O5 смешивают и добавляют 0,65 мл 5% раствора ПЭГ в КСС. Массу тщательно перемешивают до получения цементной пасты, которая через 5 мин схватывается в цементный камень. Рентгеноконтрастность по шкале Хаунсфилда (Hu) 2766 ед.

Пример 2 (таблица 1, состав №7). Сухие компоненты 0,5546 г ТКФ; 0,3004 г МКФМ; 0,045 г Ta2O5 смешивают и добавляют 0,75 мл 10% раствора ПЭГ в КСС. Массу тщательно перемешивают до получения цементной пасты, которая через 10 мин схватывается в цементный камень. Рентгеноконтрастность по шкале Хаунсфилда (Hu) 1945 ед.

Пример 3 (таблица 1, состав №5). Сухие компоненты 0,5663 г ТКФ; 0,3067 г МКФМ; 0,027 г Ta2O5 смешивают и добавляют 0,75 мл 10% раствора ПЭГ в КСС. Массу тщательно перемешивают до получения цементной пасты, которая через 9 мин схватывается в цементный камень. Рентгеноконтрастность по шкале Хаунсфилда (Hu) 1511 ед.

Источник поступления информации: Роспатент

Показаны записи 101-110 из 126.
13.02.2020
№220.018.0210

Способ восстановления повреждённых покрытий на титановых изделиях

Изобретение может быть использовано для восстановления эксплуатационных свойств изношенных изделий из титана и титановых сплавов и может быть использовано в различных отраслях промышленности, в том числе: в судостроении, авиационной, космической, автомобильной промышленностях. Способ...
Тип: Изобретение
Номер охранного документа: 0002714009
Дата охранного документа: 11.02.2020
29.02.2020
№220.018.072a

Способ переработки ильменитового концентрата

Изобретение может быть использовано при переработке природного титансодержащего сырья с получением диоксида титана анатазной модификации. Способ переработки ильменитового концентрата включает его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от...
Тип: Изобретение
Номер охранного документа: 0002715193
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.0748

Способ переработки ильменитового концентрата

Изобретение относится к переработке природного титансодержащего сырья с получением диоксида титана рутильной модификации, который находит применение в лакокрасочной и целлюлозно-бумажной отраслях промышленности, в производстве пластмасс и резинотехнических изделий, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002715192
Дата охранного документа: 25.02.2020
13.03.2020
№220.018.0af0

Измельчитель

Изобретение относится к устройствам для измельчения твердых, в том числе особо прочных, материалов и может быть использовано для дробления трудно измельчаемых материалов в различных добывающих и перерабатывающих отраслях промышленности, в частности химической, металлургической, промышленности...
Тип: Изобретение
Номер охранного документа: 0002716408
Дата охранного документа: 11.03.2020
25.03.2020
№220.018.0fa8

Способ переработки титансодержащего минерального сырья

Изобретение относится к гидрофторидной технологии переработки титансодержащего минерального сырья, преимущественно ильменитового концентрата, и может найти применение в производстве диоксида титана пигментной чистоты, а также железооксидных пигментов. Способ включает обработку исходного...
Тип: Изобретение
Номер охранного документа: 0002717418
Дата охранного документа: 23.03.2020
25.04.2020
№220.018.1927

Способ получения наноструктурного гидроксида никеля

Изобретение может быть использовано в производстве материалов для топливных ячеек, суперконденсаторов. Способ получения наноструктурного гидроксида никеля включает его осаждение в присутствии хитозана из реакционной смеси, содержащей раствор хлорида никеля (II) 6-водного и раствор мочевины....
Тип: Изобретение
Номер охранного документа: 0002719890
Дата охранного документа: 23.04.2020
26.07.2020
№220.018.3869

Способ исследования состава отложений, образующихся в оборудовании нефтедобывающей скважины

Изобретение относится к нефтяной промышленности, а именно к анализу химического и минерального состава отложений, образующихся в процессе добычи нефти в нефтепромысловом оборудовании. Способ исследования состава отложений, образующихся в оборудовании нефтедобывающей скважины, включает отбор...
Тип: Изобретение
Номер охранного документа: 0002727781
Дата охранного документа: 23.07.2020
12.04.2023
№223.018.4861

Способ получения защитных покрытий на магнийсодержащих сплавах алюминия

Изобретение относится к области гальванотехники и может быть использовано при формировании композиционных полимерсодержащих покрытий для защиты от коррозии изделий и конструкций, эксплуатируемых в неблагоприятных погодных условиях, в частности в открытом море на нефтяных платформах, в...
Тип: Изобретение
Номер охранного документа: 0002734426
Дата охранного документа: 16.10.2020
12.04.2023
№223.018.4882

Способ для измерения адгезии льда к поверхностям из различных материалов и исследовательский модуль для его осуществления

Изобретение относится к исследовательской технике. Сущность: на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие...
Тип: Изобретение
Номер охранного документа: 0002772065
Дата охранного документа: 16.05.2022
12.04.2023
№223.018.48ab

Способ получения ортоборатов лантана, допированных европием и висмутом

Изобретение относится к способу получения боратных люминофоров с помощью термообработки, причем в качестве прекурсора используют смесь олеата лантана, олеата европия, экстракта висмута с борной кислотой с введением октанола и триоктиламина, которую нагревают сначала в течение 1 часа при 200°C и...
Тип: Изобретение
Номер охранного документа: 0002762551
Дата охранного документа: 21.12.2021
Показаны записи 71-75 из 75.
12.04.2023
№223.018.48b2

Способ получения боратов лантана, легированных европием и тербием

Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь...
Тип: Изобретение
Номер охранного документа: 0002761209
Дата охранного документа: 06.12.2021
21.05.2023
№223.018.6952

Способ лечения аденокарциномы эрлиха

Изобретение относится к области медицины, а именно к экспериментальной онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Вводят в опухоль синтезированные микрочастицы биостекла «Bioglass 45S5». Затем выполяют локальное облучение...
Тип: Изобретение
Номер охранного документа: 0002794457
Дата охранного документа: 18.04.2023
03.06.2023
№223.018.7603

Способ очистки зольного графита

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также...
Тип: Изобретение
Номер охранного документа: 0002777765
Дата охранного документа: 09.08.2022
17.06.2023
№223.018.7dc0

Способ лечения аденокарциномы эрлиха методом лучевой терапии

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным...
Тип: Изобретение
Номер охранного документа: 0002781902
Дата охранного документа: 19.10.2022
17.06.2023
№223.018.80d7

Способ получения биостекла, легированного диоксидом циркония

Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002765471
Дата охранного документа: 31.01.2022
+ добавить свой РИД