×
17.02.2018
218.016.2aba

Результат интеллектуальной деятельности: Стенд для испытания обетонированных труб

Вид РИД

Изобретение

Аннотация: Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной системой, содержащей 2n жидкостных индикаторов изменения положения испытуемой трубы и n жидкостных индикаторов перемещения испытуемой трубы, подключенных к линии подачи жидкости, на которой последовательно установлены n запорных кранов. Индикаторы изменения положения испытуемой трубы связаны гидравлически и механически попарно, каждая из пар упомянутых индикаторов закреплена на испытуемой трубе симметрично относительно ее оси и гидравлически сообщена с одним из соответствующих индикаторов перемещения испытуемой трубы. Испытуемая труба размещена на двух фундаментных и двух домкратных опорах, а гидравлическая система для нагружения испытуемой трубы изгибом включает насос высокого давления и два манометра. Насос высокого давления через манометры подключен параллельно к двум домкратным опорам. Технический результат: упрощение конструкции при одновременном повышении достоверности результатов испытаний, а также расширение арсенала технических средств для проведения испытаний обетонированных труб. 4 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов.

При строительстве трубопроводов на участках пересечения с водными преградами, пойменных участках, в заболоченной и обводненной местности, а также при строительстве морских трубопроводов возникает необходимость предотвращения всплытия трубопроводов. Для решения данной задачи применяется балластировка трубопроводов путем их закрепления на проектных отметках при помощи железобетонных, чугунных, полимерно-контейнерных и других балластных пригрузов, а также фиксирование анкерами.

Наиболее надежным способом балластировки трубопроводов является применение для строительства трубопроводов труб с утяжеляющим наружным бетонным покрытием.

Согласно требованиям нормативных документов при укладке трубопроводов из обетонированных труб обязательным является расчет напряженно-деформированного состояния трубопровода, по результатам которого разрабатывают проектные требования к трубопроводу, технологию его укладки и требования к допустимым дефектам бетонного покрытия.

Информация об упруго-прочностных свойствах обетонированных труб может быть получена на основе данных производителя обетонированных труб, либо в результате теоретических выкладок. Однако, в связи с различием свойств бетона, а также конструкций обетонирующего слоя (наличие армирования, его тип, разновидность опалубки и т.п.), применяемых разными производителями, объективные данные об упруго-прочностных свойствах обетонированных труб, позволяющие сделать вывод о возможности их применения при строительстве трубопроводов, могут быть получены в результате натурных испытаний.

Наиболее близким техническим решением (прототипом) к предлагаемому является стенд для испытания труб внутренним давлением и на изгиб и гидравлическая система стенда (патент РФ №2222800, G01N 3/10, опубл. 27.01.2004). Стенд для испытания труб внутренним давлением и на изгиб состоит из устройства нагружения испытуемой трубы изгибом и гидравлической системы, причем устройство нагружения испытуемой трубы изгибом содержит плиту с опорами, гидроцилиндры, тяги, опорные и нагрузочные траверсы с профилированными ложементами, контактирующими с испытуемой трубой, гидроцилиндры шарнирно закреплены на плите и при помощи тяг шарнирно соединены с нагрузочными траверсами, а опоры соединены с опорными траверсами посредством упругих тяг для обеспечения беспрепятственного изгиба испытываемой трубы в процессе ее нагружения внутренним давлением и изгибающим моментом. Гидравлическая система стенда для испытания труб внутренним давлением и на изгиб содержит двухконтурный преобразователь давления, один из контуров которого заполнен водой для создания внутреннего давления в испытываемой трубе, а другой - гидравлическим маслом для управления преобразователем давления совместно с гидроцилиндрами устройства нагружения испытываемой трубы изгибом, водяной насос низкого давления для заполнения водой испытываемой трубы и первого контура двухконтурного преобразователя давления и насос высокого давления для подачи гидравлического масла через блок распределительных клапанов к гидроцилиндрам устройства нагружения испытываемой трубы изгибом и второму контуру двухконтурного преобразователя давления. Изобретения обеспечивают возможность проведения совместных испытаний на чистый изгиб и на воздействие внутреннего давления при минимальных технических и временных затратах для труб разных диаметров. Недостатком известного решения является его высокая металлоемкость, вызванная необходимостью обустройства массивной силовой плиты и опор. Кроме того, известное решение позволяет получать данные только о максимальной нагрузке, приводящей к разрушению испытуемой трубы, на конечном этапе испытаний на изгиб, и исключает возможность получения промежуточных данных о напряженно-деформированном состоянии трубопровода при постепенном нагружении трубы на изгиб, а также об упругих свойствах обетонированной трубы, что обусловливает невысокую достоверность результатов испытаний.

Задачей, на решение которой направлено предлагаемое изобретение, является создание стенда для испытания стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов при нагружении изгибающим моментом.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является упрощение конструкции при одновременном повышении достоверности результатов испытаний за счет получения большего объема информации в процессе проведения испытаний. Техническим результатом является также расширение арсенала технических средств для проведения испытаний обетонированных труб.

Указанный технический результат достигается за счет того, что стенд для испытания обетонированных труб, включающий опоры и гидравлическую систему для нагружения испытуемой трубы изгибом, снабжен измерительной системой, содержащей 2n жидкостных индикаторов изменения положения испытуемой трубы и n жидкостных индикаторов перемещения испытуемой трубы, подключенных к линии подачи жидкости, на которой последовательно установлены n запорных кранов. Индикаторы изменения положения испытуемой трубы связаны гидравлически и механически попарно. Каждая из пар упомянутых индикаторов закреплена на испытуемой трубе симметрично относительно ее оси и гидравлически сообщена с одним из соответствующих индикаторов перемещения испытуемой трубы. Испытуемая труба размещена на двух фундаментных и двух домкратных опорах. Гидравлическая система для нагружения испытуемой трубы изгибом включает насос высокого давления и два манометра, причем насос высокого давления через манометры подключен параллельно к двум домкратным опорам.

Реализация предлагаемого изобретения позволяет проводить испытания стальных обетонированных труб на упругость при нагружении изгибающим моментом, действующим в условиях реальной эксплуатации магистральных газопроводов при подвижках грунта, температурных перепадах, выполнении строительных и ремонтных работ и т.д. В результате испытаний конкретного типа обетонированных труб для указанных труб могут быть получены опытным путем данные, необходимые для выполнения расчетов напряженно-деформированного состояния трубопровода:

- эмпирическая зависимость жесткости испытуемой обетонированной трубы от изгибающего момента;

- изменение состояния бетонного покрытия труб при их изгибе.

На фиг. 1 изображена схема стенда для испытания обетонированных труб.

На фиг. 2 - разрез А-А на фиг. 1.

На фиг. 3 - гидравлическая система стенда.

На фиг. 4 - измерительная система стенда.

Стенд для испытания обетонированных труб включает:

- фундаментные опоры 1 и 2, представляющие собой грунтовые анкеры, каждый из которых выполнен из двух взаимно перпендикулярных отрезков труб. Каждая их фундаментных опор 1 и 2 снабжена механизмами натяжения 3, выполненными в виде хомутов;

- домкратные опоры 4 и 5. Каждая из опор 4, 5 состоит из неподвижного основания, гидравлического домкрата бутылочного типа и траверсы, жестко закрепленной на неподвижном основании. Траверса выполнена с возможностью размещения на ней испытуемой стальной трубы диаметром 1400 мм и снабжена центральным отверстием для контакта домкрата с упомянутой трубой. Нижняя часть домкрата шарнирно закреплена на неподвижном основании с возможностью углового перемещения верхней его части относительно оси крепления в вертикальной плоскости, проходящей через ось упомянутой трубы, что позволяет ослабить воздействие на домкрат упомянутой трубы в процессе ее изгиба и предохраняет его от поломки;

- испытуемую трубу 6, содержащую центральную обетонированную трубу 7 и трубы 8, 9, приваренные к обетонированной трубе 7 с двух концов. Трубы 8 и 9 выполнены из того же сортамента, что и обетонированная труба 7, и используются в качестве рычагов при нагружении обетонированной трубы 7 изгибом. Труба 8 размещена на опорах 1 и 4, а труба 9 - на опорах 2 и 5;

- гидравлическую систему для нагружения испытуемой трубы 6 на изгиб, содержащую два манометра 10, 11 и насос высокого давления 12, соединенный посредством армированных рукавов высокого давления через манометр 10 с домкратной опорой 4 и через манометр 11 - с домкратной опорой 5;

- измерительную систему, которая содержит 2n индикаторов изменения положения 13 испытуемой трубы 6 и n индикаторов перемещения 14 испытуемой трубы 6. Индикаторы изменения положения 13 связаны механически попарно и жестко закреплены на испытуемой трубе 6 симметрично относительно ее оси, например, с помощью хомутов. Каждый из индикаторов изменения положения 13 испытуемой трубы 6 выполнен в виде цилиндрической металлической емкости для жидкости. Выходы, расположенные в нижней части каждой из емкостей, объединены в каждой из n пар и подключены посредством рукавов низкого давления к линии подачи жидкости 15, соединенной с баком-коллектором 16. Каждый из индикаторов перемещения 14 испытуемой трубы 6 выполнен в виде полой трубки из прозрачного материала, оснащенной измерительной шкалой и поплавком, и закреплен вертикально на индикаторной панели 17. Входы в нижней части каждого из индикаторов перемещения 14 испытуемой трубы 6 посредством армированных рукавов низкого давления подсоединены к линии подачи жидкости 15. На линии подачи жидкости 15 установлены n запорных кранов 18, с помощью которых отсекают индикаторы перемещения 14 друг от друга и от линии подачи жидкости 15 и соединяют упомянутые индикаторы напрямую с соответствующими парами индикаторов положения 13 испытуемой трубы 6.

Предлагаемый стенд для испытания обетонированных труб работает следующим образом.

Испытуемую трубу 6 укладывают на фундаментные опоры 1, 2 и домкратные опоры 4, 5.

Фиксируют испытуемую трубу 6 при помощи механизмов натяжения 3, обеспечивая при этом возможность свободного перемещения испытуемой трубы 6 в вертикальной плоскости относительно фундаментных опор 1, 2 для достижения зазора между трубами 8, 9 и фундаментными опорами 1 и 2.

Устанавливают на испытуемую трубу 6 измерительную систему. Заливают в бак-коллектор 16 жидкость, при этом для испытаний, выполняемых при положительной температуре воздуха, используют воду, а для испытаний при отрицательных температурах - жидкость с пониженной температурой замерзания (спиртовой раствор или водный раствор солей).

Открывают все запорные краны 18 и по линии подачи жидкости 15 заполняют жидкостью измерительную систему до достижения уровнем жидкости в индикаторах перемещения 14 нулевой отметки.

При помощи домкратных опор 4, 5 приподнимают испытуемую трубу 6 до достижения зазора между трубами 8, 9 и фундаментными опорами 1 и 2 соответственно для обеспечения свободного вывешивания испытуемой трубы 6 на домкратных опорах 4, 5.

Закрывают запорные краны 18 и определяют начальные координаты n точек испытуемой трубы 6 с помощью измерительной шкалы индикаторов перемещения 14 испытуемой трубы 6. Линия, соединяющая уровни жидкости в индикаторах перемещения 14, представляет собой сжатый профиль испытуемой трубы 6.

При помощи динамометрического ключа осуществляют затяжку механизмов натяжения 3 до обеспечения необходимой величины предварительного нагружения. Величину момента затяжки, обеспечивающего необходимую величину предварительного нагружения испытуемой трубы 6, определяют расчетным путем, исходя из начального значения нагрузки на домкратных опорах 4, 5 при свободном вывешивании испытуемой трубы 6 и максимального значения нагрузки на упомянутых опорах, при котором изгибающий момент вызывает в металле испытуемой трубы 6 напряжение, максимально допустимое при строительно-монтажных работах в соответствии с требованиями нормативных документов.

Далее при помощи насоса 12 осуществляют поэтапно подъем давления в домкратных опорах 4 и 5 с равным шагом увеличения нагрузки, таким образом, чтобы повышение нагрузки от начального значения до максимального значения осуществлялось за десять этапов. Величину давления контролируют с помощью манометров 10 и 11.

На каждом этапе повышения давления в домкратных опорах 4 и 5 фиксируют значения вертикальных перемещений испытуемой трубы 6 в n точках, снимая показания с измерительной шкалы индикаторов перемещения 14. Подъем давления после завершения каждого этапа приостанавливают, чтобы нивелировать колебания жидкости в измерительной системе.

После достижения максимальной нагрузки на испытуемую трубу 6 начинают поэтапно снижать давление в домкратных опорах 4, 5 с таким же шагом, как и при подъеме давления, при этом на каждом этапе фиксируют показания индикаторов перемещения 14.

После достижения нулевой отметки избыточное давление в домкратных опорах 4, 5 снижают до нуля.

Для того чтобы сравнить упругие свойства обетонированной трубы 7, не претерпевшей упругой деформации, и упругие свойства обетонированной трубы 7, подвергшейся изгибу, снимают механизмы натяжения 3, вращают испытуемую трубу 6 относительно ее продольной оси на 180°, закрепляют с помощью механизмов натяжения 3 и повторяют весь процесс испытания.

Используя полученный в процессе испытания большой объем информации (значения перемещений различных точек испытуемой трубы 6 и значения нагрузки на домкратных опорах 4, 5), определяют расчетным путем, с использованием известных математических методов, зависимость модуля упругости обетонированной трубы от ее деформации для двух вариантов: трубы, не претерпевшей упругой деформации (первая серия измерений), и трубы, подвергшейся изгибу (вторая серия измерений).

Полученная зависимость модуля упругости обетонированной трубы от ее деформации позволяет определить упруго-прочностные свойства обетонированных труб, которые должны быть учтены при расчетах процесса укладки трубы на проектные отметки при сооружении трубопровода и при расчетах нагрузок, возникающих при взаимодействии участка магистрального трубопровода, построенного из обетонированных труб, с вмещающим грунтом в процессе эксплуатации.

Стенд для испытания обетонированных труб, включающий опоры и гидравлическую систему для нагружения испытуемой трубы изгибом, отличающийся тем, что снабжен измерительной системой, содержащей 2n жидкостных индикаторов изменения положения испытуемой трубы и n жидкостных индикаторов перемещения испытуемой трубы, подключенных к линии подачи жидкости, на которой последовательно установлены n запорных кранов, при этом индикаторы изменения положения испытуемой трубы связаны гидравлически и механически попарно, каждая из пар упомянутых индикаторов закреплена на испытуемой трубе симметрично относительно ее оси и гидравлически сообщена с одним из соответствующих индикаторов перемещения испытуемой трубы, испытуемая труба размещена на двух фундаментных и двух домкратных опорах, а гидравлическая система для нагружения испытуемой трубы изгибом включает насос высокого давления и два манометра, причем насос высокого давления через манометры подключен параллельно к двум домкратным опорам.
Стенд для испытания обетонированных труб
Стенд для испытания обетонированных труб
Стенд для испытания обетонированных труб
Стенд для испытания обетонированных труб
Стенд для испытания обетонированных труб
Источник поступления информации: Роспатент

Показаны записи 91-100 из 167.
10.05.2018
№218.016.4b1a

Катионный буровой раствор для бурения неустойчивых глинистых пород

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых набухающих пластичных глин и аргиллитов. Технический результат - повышение эффективности бурения, улучшение фильтрационных свойств...
Тип: Изобретение
Номер охранного документа: 0002651652
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b48

Термостойкий поликатионный буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях в условиях воздействия высоких температур. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002651657
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4f50

Способ оценки качества цементирования скважины в низкотемпературных породах

Изобретение относится к газовой и нефтяной промышленности и может быть использовано при освоении северных месторождений углеводородов, в частности при контроле теплоизолирующей способности теплоизолированной колоны (ТОК) и оценке качества цементирования скважин, пробуренных в районах...
Тип: Изобретение
Номер охранного документа: 0002652777
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.534e

Резервуар для хранения криогенной жидкости

Изобретение относится к криогенной технике, в частности к криогенному емкостному оборудованию, и может быть использовано для хранения и транспортирования сжиженного природного газа под повышенным давлением. Резервуар для хранения криогенной жидкости состоит из внутреннего сосуда, кожуха и...
Тип: Изобретение
Номер охранного документа: 0002653611
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.555c

Подводная атомная газоперекачивающая станция

Изобретение относится к области подводного обустройства морских нефтегазовых месторождений и предназначено для транспортировки природного газа по подводным трубопроводам. Подводная атомная газоперекачивающая станция содержит первый и второй контуры производства и использования пара, систему...
Тип: Изобретение
Номер охранного документа: 0002654291
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5855

Способ определения потерь газа при эксплуатации подземных хранилищ газа

Изобретение относится к газодобывающей промышленности и может использоваться при эксплуатации подземных хранилищ газа (ПХГ). Техническим результатом является повышение точности учета газа в хранилище, надежности ПХГ и обеспечение проектных показателей при эксплуатации ПХГ. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002655090
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.58ec

Катионный буровой раствор

Изобретение относится к безглинистым буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении продуктивных пластов и неустойчивых глинистых пород в условиях воздействия высоких температур до 160°C. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002655267
Дата охранного документа: 24.05.2018
29.05.2018
№218.016.593b

Способ эксплуатации многопластового подземного хранилища газа

Изобретение относится к газовой отрасли и может быть использовано при эксплуатации подземных хранилищ газа (ПХГ) в водоносных пластах, представленных двумя или более пропластками. При осуществлении способа эксплуатацию ПХГ ведут с использованием нескольких скважин. В каждой из скважин...
Тип: Изобретение
Номер охранного документа: 0002655259
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5cfa

Биосорбент для очистки воды от углеводородных загрязнений и способ его получения

Группа изобретений относится к биотехнологии. Предложены способ получения биосорбента и биосорбент для очистки воды от углеводородных загрязнений. Способ включает предварительную сушку измельченного до фракций 1-1,5 мм торфа при 40-50°С до влажности не более 3%, пиролиз под вакуумом при...
Тип: Изобретение
Номер охранного документа: 0002656146
Дата охранного документа: 31.05.2018
16.06.2018
№218.016.62b0

Контейнер для баллонов с компримированным природным газом

Изобретение относится к области газоснабжения транспортных средств, работающих на газомоторном топливе, а именно, для автобусов и грузовых автомобилей. Контейнер для баллонов с компримированным природным газом выполнен в виде рамного каркаса (5), который закрепляется на крыше газобаллонного...
Тип: Изобретение
Номер охранного документа: 0002657841
Дата охранного документа: 15.06.2018
Показаны записи 91-100 из 135.
19.08.2018
№218.016.7d83

Устройство для балластировки подводного трубопровода

Изобретение относится к трубопроводному транспорту нефти и газа и может быть использовано для балластировки подводных трубопроводов и трубопроводов, сооружаемых или ремонтируемых в обводненных траншеях. Техническими задачами изобретения являются создание устройства для балластировки подводного...
Тип: Изобретение
Номер охранного документа: 0002664323
Дата охранного документа: 16.08.2018
19.08.2018
№218.016.7db6

Способ балластировки трубопровода в обводненной траншее

Изобретение относится к трубопроводному транспорту нефти и газа и может быть использовано при балластировке трубопроводов, сооружаемых или ремонтируемых в обводненных траншеях. Способ балластировки трубопровода в обводненной траншее включает закрепление на нижней части трубопровода с помощью...
Тип: Изобретение
Номер охранного документа: 0002664322
Дата охранного документа: 16.08.2018
07.09.2018
№218.016.8478

Способ испытания трубных сталей на коррозионное растрескивание под напряжением и устройство для его осуществления

Группа изобретений относится к испытаниям трубных сталей на склонность к коррозионному растрескиванию под напряжением. В способе испытания трубных сталей на КРН вырезают образец из стенки трубы магистрального газопровода и/или из неэксплуатировавшейся трубы. Рабочая часть образца содержит, по...
Тип: Изобретение
Номер охранного документа: 0002666161
Дата охранного документа: 06.09.2018
22.09.2018
№218.016.892f

Способ балластировки трубопровода

Изобретение относится к трубопроводному транспорту нефти и газа и может быть использовано для балластировки сооружаемых или ремонтируемых подземных трубопроводов, в том числе в условиях обводнения траншеи. Техническим результатом изобретения является повышение надежности трубопровода в...
Тип: Изобретение
Номер охранного документа: 0002667308
Дата охранного документа: 18.09.2018
26.12.2018
№218.016.ab16

Устройство для очистки трубопроводов путем продувки

Изобретение относится к нефтегазовой отрасли и может использоваться для очистки магистральных трубопроводов после их сооружения. Устройство для очистки трубопроводов путем продувки содержит корпус (1), выполненный в виде соединенных перпендикулярно двух полых металлических цилиндров и имеющий...
Тип: Изобретение
Номер охранного документа: 0002676040
Дата охранного документа: 25.12.2018
01.03.2019
№219.016.c87c

Устройство для балластировки трубопровода

Изобретение относится к трубопроводному транспорту нефти и газа и может быть использовано для балластировки сооружаемых или ремонтируемых подземных трубопроводов. Задачей изобретения является создание устройства для балластировки трубопровода, исключающего указанные недостатки аналогов и...
Тип: Изобретение
Номер охранного документа: 0002680772
Дата охранного документа: 26.02.2019
06.06.2019
№219.017.741f

Способ изготовления труб

Изобретение относится к способу изготовления труб. Техническим результатом является уменьшение механических кольцевых растягивающих напряжений стенки трубы. Технический результат достигается способом изготовления труб, который включает послойную спиральную намотку на трубу, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002690455
Дата охранного документа: 03.06.2019
14.06.2019
№219.017.82be

Комбинированный уплотнитель обсадных труб для подводных скважин

Изобретение относится к устройству, используемому при эксплуатации подводных скважин, и может быть использовано для герметизации двух труб одновременно в условиях высокого осевого давления при спуске в подводную скважину. В частности, предложен комбинированный уплотнитель, содержащий...
Тип: Изобретение
Номер охранного документа: 0002691416
Дата охранного документа: 13.06.2019
26.07.2019
№219.017.b96a

Устройство для блокировки съёмной направляющей и съёмная направляющая

Группа изобретений относится к фиксирующим механизмам для фиксации подводных вертикальных направляющих, а именно к устройству для блокировки съемной направляющей и к самой съемной направляющей. Предлагаемое устройство для блокировки съемной направляющей содержит: полый цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002695581
Дата охранного документа: 24.07.2019
10.10.2019
№219.017.d3de

Цанговый соединитель

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам оборудования устья скважины. Техническим результатом является повышение степени надежности и герметичности соединения при одновременном снижении массогабаритных характеристик и упрощении процессов монтажа и...
Тип: Изобретение
Номер охранного документа: 0002702488
Дата охранного документа: 08.10.2019
+ добавить свой РИД