×
13.02.2018
218.016.26fe

Результат интеллектуальной деятельности: Способ получения стабильных высококонцентрированных органозолей на основе наночастиц серебра для получения электропроводящих пленок

Вид РИД

Изобретение

Аннотация: Изобретение относится к области коллоидной химии, а именно к способам получения стабильных органозолей наночастиц металлов, в частности наночастиц серебра, которые перспективны в качестве чернил-красок для получения электропроводящих пленок, электронных красок для электрофоретических дисплеев, лекарственных препаратов наружного применения с антимикробным действием, теплоотводящих жидкостей, активных усиливающих сред для «случайных» лазеров. Описан способ получения стабильного высококонцентрированного органозоля на основе наночастиц серебра для получения электропроводящих пленок, включающий стадию солюбилизации и стадию восстановления ионов серебра гидразином в дисперсионной среде 0,25 М раствора бис-(2-этилгексил) сульфосукцината натрия в н-декане, в котором исходные реагенты - азотнокислое серебро и гидразин - вводят в дисперсионную среду в режиме динамической обратной эмульсии, причем сначала вводят раствор азотнокислого серебра, при этом стадии солюбилизации и восстановления ионов серебра объединены в одну стадию, при соотношении объемов фаз водные растворы реагентов: дисперсионная среда равном 1:2,5 с последующим разделением фаз, органическую фазу обезвоживают, в обезвоженный органозоль вводят от 1,0 до 2,5 об. % от объема органозоля, воды и проводят электрофоретическое концентрирование при напряженности постоянного поля 300-600 В/см в течение 1,5-2 часов. Технический результат: предложен способ, обеспечивающий получение стабильного концентрата с концентрацией наночастиц серебра, достаточной для получения проводящих пленок. 2 з.п. ф-лы, 7 ил., 4 табл., 3 пр.

Изобретение относится к области коллоидной химии, разделу химии ультрадисперсных систем, а именно к способам получения стабильных органозолей наночастиц металлов. Стабильные органозоли наночастиц серебра перспективны в качестве чернил-красок для получения электропроводящих пленок, электронных красок для электрофоретических дисплеев, лекарственных препаратов наружного применения с антимикробным действием, теплоотводящих жидкостей, активных усиливающих сред для «случайных» лазеров.

Известны способы получения органозолей наночастиц серебра и других металлов мицеллярным (микроэмульсионным) синтезом [1. Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions // Adv. Colloid Interface Sci. - 2004. - V. 110. - N 1-2. - P. 49-74. 2. Eastoe J., Hollamby M. J., Hudson L. Recent advances in nanoparticle synthesis with reversed micelles // Adv. Colloid Interface Sci. - 2006. - V. 128-130. - P. 5-15].

Способы дают возможность регулировать размеры получаемых наночастиц и получать органозоли частиц с узким распределением по размерам. Растворы исходных реагентов, чаще всего водорастворимые соли металлов и восстановители, вводятся (солюбилизируются) инъекционно в две разные части раствора мицеллообразующего поверхностно-активного вещества (ПАВ) с концентрацией от 0.1 до 10% в органических растворителях, чаще всего в предельных углеводородах, которые затем смешиваются с образованием оптически прозрачных растворов.

Недостатком известных инъекционно-микроэмульсионных способов являются низкая концентрация наночастиц металлов в дисперсиях, недостаточная для формирования проводящих пленок. Обозначенный недостаток обусловлен чрезвычайно низкой солюбилизационной емкостью мицеллярных растворов ПАВ, обычно не более 1-5 об.%, причем солюбилизационная емкость резко уменьшается при увеличении концентрации вводимых солей. Поэтому мицеллярный синтез обычно ведут при солюбилизационных емкостях не более 1 об %. Кроме того, низкие солюбилизационные емкости обеспечивают малый размер наночастиц (2-10 нм) и хорошую монодисперсность. Однако в результате уже на стадии синтеза концентрации реагентов снижаются в 100 раз, по сравнению с «водным» синтезом.

Известны способы увеличения концентрации наночастиц металлов в органозоле введением реагентов (азотнокислое серебро и восстановители) в исходные мицеллярные растворы методами жидкостной или твердофазной экстракцией [3. Noritomi Н., Umezawa Y., Miyagawa S., Kato S. Preparation of Highly Concentrated Silver Nanoparticles in Reverse Micelles of Sucrose Fatty Acid Esters through Solid-Liquid Extraction Method // Advances in Chemical Engineering and Science-2011. - V. 1. - N 4. - P. 299-304]. В итоге концентрация наночастиц была увеличена на порядок. Однако полученной концентрации наночастиц в органозоле было недостаточно для получения проводящих пленок.

Известен способ получения органозолей синтезом в микроэмульсиях с высоким содержанием водной псевдофазы с выделением твердофазного осадка и его последующим редиспергированием в подходящем растворителе [4. Sosa Y. D, Rabelero М., М.Е, Saade Н. and R. G. High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion // Hindawi Publishing Corporation. Journal of Nanomaterials V. 2010, Article ID 392572, 6 pages doi:10.1155/2010/392572]. Его недостатками являются сложный состав микроэмульсии, использование смешанных мицелл AOT+DDSNa (додецилсульфат натрия), синтез при повышенной температуре (70°C) и сложность подбора растворителя для редиспергирования.

Известен способ [5. Bulavchenko A.I., Pletnev D.N. Electrophoretic concentration of nanoparticles of gold in reversed micellar solutions of AOT // J. Phys. Chem. C - 2008. - V. 112. - №42. - P. 16365-16369] получения концентрированных органозолей наночастиц золота, в котором инъекционное введение реагентов и последующий синтез дополнялись введением дополнительной стадии электрофоретического концентрирования в электрофоретической ячейке конденсаторного типа. Концентрации золота в органозоле увеличились до 2 моль/л, однако объем получаемого концентрата составил всего 0,1 об.% от объема микроэмульсии (например, из 20 мл мицеллярного раствора после синтеза удается выделить не более 20 мкл жидкого концентрата с концентрацией 2 М).

Известен способ [6. Bulavchenko A.I. Popovetsky P.S. The electrokinetic potential of nanoparticles in reverse AOT micelles: photometric determination and role in the processes of heterocoagulation, separation, and concentration // Langmuir. - 2010. - V. 26. - №2. - P. 736-742] получения концентрированных органозолей серебра электрофоретическим концентрированием. Концентрации серебра в органозоле увеличились до 1 М, что было достаточно для получения проводящих пленок. Однако, объем выделяемого концентрата также был незначительным, не более 0,1 об. % от объема микроэмульсии.

Известен способ [7. Поповецкий П.С., Булавченко А.И., Манаков А.Ю. Получение и физико-химические свойства гидрофобного концентрата наночастиц серебра // Оптический журнал. - 2011. - Т. 78, №7. - С. 67-72], в котором получение органозоля проводилось следующим образом. На стадии синтеза в две порции по 10 мл 0,25 М раствора AOT (бис-(2-этилгексил) сульфосукцината натрия) в декане инъекционно вводятся: в первую 0,1 мл азотнокислого серебра (AgNO3) с концентрацией 0,25 М; во вторую 0,1 мл 20 М гидразина (N2H4). Растворы после введения реагентов должны быть прозрачны. Затем растворы с реагентами смешиваются. Реакционная смесь оставляется на ночь. Концентрация серебра в органозоле интенсивно желтого цвета составила 0,00125 М. При введении в первую порцию раствора AgNO3 с большей концентрацией или больших объемов стабильный органозоль с наночастицами серебра не формируется: уже в процессе восстановления выпадает черный осадок. Далее проводилось электрофоретическое концентрирование аналогично [5, 6]. Концентрации серебра в органозоле увеличились до 1 М, что было достаточно для получения проводящих пленок. Однако выделенный объем концентрата также был незначительным (не более 0,1 об.% от объема микроэмульсии). Данный способ и является прототипом заявляемого способа.

Задача предлагаемого изобретения заключается в значительном увеличении объема выделяемого стабильного концентрата с концентрацией наночастиц, достаточной для получения проводящих пленок. Поставленная задача решается тем, что в способе получения стабильных высококонцентрированных органозолей на основе наночастиц серебра для получения электропроводящих пленок исходные реагенты - азотнокислое серебро и гидразин - вводят в дисперсионную среду в режиме динамической обратной эмульсии, причем сначала вводят раствор азотнокислого серебра, при этом стадии солюбилизации и восстановления ионов серебра объединены в одну стадию, при соотношении объемов фаз водные растворы реагентов: дисперсионная среда равном 1:2,5 с последующим разделением фаз, органическую фазу обезвоживают, в обезвоженный органозоль вводят от 1,0 до 2,5 об.%, от объема органозоля, воды и проводят электрофоретическое концентрирование при напряженности постоянного поля 300-600 В/см в течение 1,5-2 часов, при этом при восстановлении используют 0,3 М раствор азотнокислого серебра и 10 М раствор гидразина, полученный концентрат органозоля стабилен, имеет плотность 1,1-1,3 г/см3, содержит 3-4,5 М серебра в виде наночастиц размером 3-6 нм.

Отличительные признаки изобретения:

- исходные реагенты: азотнокислое серебро и гидразин, вводят в дисперсионную среду в режиме динамической обратной эмульсии;

- последовательность введения реагентов;

- объединение в одну стадию стадии солюбилизации и восстановления ионов серебра;

- соотношение объемов фаз водные растворы реагентов:дисперсионная среда равно 1:2,5;

- введение в обезвоженный органозоль от 1,0 до 2,5 об.% воды, от объема органозоля;

- концентрации исходных реагентов и характеристика полученного концентрата органозоля.

В способе-прототипе используется классическая схема мицеллярного (микроэмульсионного) синтеза: исходные реагенты вводятся в мицеллярный раствор АОТ методом инъекционной солюбилизации, т.е. последовательным прикапыванием водных растворов реагентов к органической фазе (раствор АОТ в предельных углеводородах); образующиеся микроэмульсии должны быть прозрачными. Существенным и трудно преодолимым недостатком мицеллярного синтеза является низкая массовая концентрация полученных органозолей. Проблема обусловлена малой солюбилизационной емкостью обратных микроэмульсий по отношению к водным растворам исходных реагентов (1-5 об.%). Таким образом, по сравнению с «водным» синтезом реагенты разбавляются при инъекционной солюбилизации сразу в 20-100 раз! Причем чаще всего используются именно низкие солюбилизационные емкости (0-1 об.%), так как только при малых содержаниях водной псевдофазы формируются малые наночастицы.

Данная проблема решается в предлагаемом способе тем, что исходные реагенты - азотнокислое серебро и гидразин - вводят в дисперсионную среду в режиме динамической обратной эмульсии, стадии солюбилизации и восстановления ионов серебра объединяются в одну, что позволяет вводить гораздо большие объемы азотнокислого серебра (например, 4 мл против 0,1 мл в 20 мл органической фазы). И восстановление ведут не в мицеллярном режиме, а в режиме динамической обратной эмульсии. В эмульсии реагенты находятся исходно в каплях микронного размера; в то время как в мицеллярных системах - в мицеллах нанометрового размера. После синтеза излишки воды удаляют и на электрофорез направляют органозоль с концентрацией серебра 0,04-0,05 М, что в ~ 30 раз превышает концентрацию в органозоле, получаемом мицеллярным синтезом.

Обоснование признаков формулы. С целью нахождения оптимальных условий эмульсионного синтеза наночастиц серебра в дисперсионной среде (0,25 М растворе АОТ в н-декане) при фиксированном отношении объемов фаз дисперсионной среды и водные растворы исходных реагентов равном 2,5 варьировали последовательность введения реагентов, концентрации гидразина и азотнокислого серебра в водном растворе (фаза исходных реагентов). Для расчета выхода продукта содержание серебра в дисперсионной среде (органической фазе) контролировали методом спектрофотометрии по его плазмонному поглощению. Показано, что органозоль серебра может быть получен только при первоочередном введении в органическую фазу раствора AgNO3. Изучено влияние концентрации гидразина в интервале 1-20 М. В таблице 1 показано влияние концентрации гидразина на выход наночастиц серебра. Условия: объем органической фазы равен 20 мл; объем исходных реагентов равен 8 мл (4 мл 1 М AgNO3 + 4 мл N2H4). На основании полученных данных выбрано оптимальное значение концентрации гидразина – 10 M (выход серебра - 25%). Для увеличения выхода наночастиц серебра в органозоле и устранения его потерь изучено влияние концентрации азотнокислого серебра в водном растворе. В таблице 2 показано влияние концентрации серебра (0,3-1 М) на выход наночастиц серебра. Из полученных данных следует, что при условиях: объем органической фазы - 20 мл; суммарный объем исходных реагентов - 8 мл (по 4 мл каждого); концентрация AgNO3 - 0,3 М; концентрация N2H4 – 10 M достигается высокий выход наночастиц серебра - 78%. Данные условия синтеза выбраны как оптимальные.

Оптимальные условия электрофоретического концентрирования находились в зависимости от содержания водной псевдофазы в микроэмульсиии. Специально для этого после синтеза проводилось обезвоживание микроэмульсии испарением воды при перемешивании в открытом стакане. Затем в микроэмульсию инъекционно добавляли от 0.5 до 10 об.% дистиллированной воды. Такой прием позволяет контролировать содержание воды в микроэмульсии и находить оптимальное содержание воды для проведения электрофореза. Электрофорез проводился на следующие сутки после инъекционной солюбилизации водной псевдофазы. Результаты концентрирования электрофорезом шести параллельных опытов при содержании водной псевдофазы равном 2.5 об.% и четырех параллельных опытов при содержании водной псевдофазы равном 1,5 об.% приведены в таблицах 3 и 4. Условия синтеза следующие: в 20 мл дисперсионной среды (0,25 М АОТ в декане) вводили 4 мл 0,3 М AgNO3 и 4 мл 10 M гидразина. В первом случае электрофорез проводился 1,5 часа при напряженности поля 600 В/см; во втором - 2 часа при напряженности поля 300 В/см. Зависимость концентрации серебра в выделенном концентрате от содержания водной псевдофазы приведена на фиг. 1. Из полученных данных следует, что концентрации серебра свыше 3 М получают при содержании водной псевдофазы в довольно узком диапазоне: от 1 до 2.5 об.%. В итоге после электрофореза получают значительно больший (приблизительно на порядок) объем концентрата (0,21 и 0,27 мл против 0,025 мл) с большей концентрацией серебра (4.3 и 3,34 М против 1 M в способе-прототипе). Размеры наночастиц и другие параметры органозоля при этом отличаются незначительно, полученные концентраты органозоля в условиях предлагаемого синтеза и концентрирования содержат 3-4,5 М серебра в виде наночастиц размером 3-6 нм. На фиг. 2 приведены спектры плазмонного резонансного поглощения наночастиц серебра. Длина волны максимума поглощения (405 нм) характерна в соответствии с теорией М и для наночастиц малого размера. По данным фотон-корреляционной спектроскопии эффективный гидродинамический диаметр полученных наночастиц составляет 6 нм (n-усреднение). Полученное значение близко к диаметру, определенному просвечивающей электронной микроскопией (3 нм) (фиг. 3, 4). Разницу в 3 нм следует отнести к удвоенной длине молекулы АОТ, адсорсорбированной наночастицей. Зависимость плотности полученных органозолей от концентрации серебра приведена на фиг. 5.

Механизм предлагаемого эмульсионного синтеза детально не исследован. По-видимому, реагенты из микронных капель динамической обратной эмульсии переходят в нанометровые полости обратных мицелл дисперсионной среды, где и происходит их взаимодействие. Адсорбционный слой мицелл ограничивает рост наночастиц серебра и стабилизирует наночастицы по отношению к коагуляции.

Синтез проводят при комнатной температуре. В мицеллярный раствор поверхностно-активного вещества АОТ (бис-(2-этилгексил) сульфосукцината натрия) в н-декане при сильном перемешивании вначале вводят водный раствор азотнокислой соли серебра (AgNO3) (20% от объема мицеллярного раствора), а затем сразу такой же объем концентрированного восстановителя - гидразина. В сумме объем реагентов составляет 40 об.% от исходного объема мицеллярного раствора АОТ. В итоге реакционная смесь представляет собой динамическую обратную эмульсию с соотношением фаз вода/масло 1:2,5. Синтез ведут в течение 60 минут при интенсивном перемешивании; при этом эмульсия меняет цвет от бесцветной до темно-коричневого цвета (цвета чернил). Эмульсию оставляют на ночь до полного разделения фаз и центрифугируют на следующий день. Фазы разделяют, органическую перемешивают на магнитной мешалке в открытом стакане до полного испарения воды. Полученный органозоль наночастиц фильтруют; аликвоту органозоля разбавляют и анализируют спектрофотометрически на содержание серебра.

Электрофоретическое концентрирование. В обезвоженный органозоль вводят 1-2,5 об % дистиллированной воды (водная псевдофаза). Полученную микроэмульсию заливают в электрофоретическую ячейку с плоскопараллельными электродами конденсаторного типа и подвергают электрофорезу с целью дополнительного концентрирования и отделения наночастиц от побочных продуктов реакции. Полученный жидкий концентрат анализируют на содержание металла, определяют размер и регистрируют спектры поглощения наночастиц; измеряют плотности, вязкости и поверхностного натяжения - параметры, определяющие технологические характеристики полученного конечного концентрата-чернил.

Характеризация. Спектры поверхностного плазмонного резонанса наночастиц регистрировали спектрофотометром Shimadzu 1700. Размер наночастиц непосредственно в органозоле определяли методом фотон-корреляционной спектроскопии (ФКС, спектрометр NanoBrook Omni, США), а высушенных образцов - просвечивающей электронной микроскопии (ПЭМ). Использовали электронный микроскоп JEM-2010 с максимальным разрешением 0.2 нм на точку. Электрокинетический потенциал (дзета-потенциал) наночастиц серебра в органозоле после синтеза определяли на спектрометре NanoBrook Omni в опции PALS, производства Brookhaven, США. Вязкость органозолей определяли с помощью вискозиметра MicroVISC (ReoSense Inc, США). Поверхностное натяжение определяли, анализируя форму висящей капли на тензиометре OCA 15Pro (Dataphysics, Германия). Натяжение рассчитывалось по уравнению Юнга-Лапласа. Плотность измеряли взвешиванием известных объемов органозолей на аналитических весах ViBRA HTR-220CE (Sinko Denshi, Япония).

Получение проводящих пленок из конечного концентрата. Электропроводящие пленки получали двумя способами: термической и химической металлизацией [8. Булавченко А.И., Поповецкий П.С., Максимовский Е.А. Свойства проводящих пленок из электрофоретического концентрата наночастиц серебра и золота в АОТ // Журнал физической химии. - 2013, Т. 87. №10. - С. 1779-1784], нанесением концентрата методом spin coating.

Термическая металлизация представляет собой термолиз пленок высушенных концентратов на стеклянных подложках при температурах 200-250°С, а химическая - выдерживание пленок высушенных концентратов в водно-спиртовых растворах. Электрическое сопротивление полученных пленок измерялось с помощью цифрового мультиметра UT70A игольчатыми щупами, расположенными на расстоянии 2 см друг от друга. Пленка признавалась проводящей, если сопротивление между щупами не превышало 10 Ом.

Пример 1. В 20 мл 0,25 М раствора АОТ в н-декане при интенсивном перемешивании (500 об/мин) в течение 1 минуты по каплям вводится 4 мл раствора AgNO3 с концентрацией 0,3 моль/л, а затем аналогично добавляется 4 мл моногидрата гидразина (10 моль/л). Соотношение объемов фаз водные растворы реагентов:дисперсионная среда составило 1:2,5.

Отметим, что объемы реагентов в 40 раз превышают объемы, вводимые по способу-прототипу. Перемешивание продолжают в течение 60 минут. Эмульсию оставляют на ночь до полного разделения фаз и дополнительно центрифугируют на следующий день в течение 10 минут при скорости вращения 3000 об/мин. Фазы разделяют, органическую (20 мл) перемешивают на магнитной мешалке (500 об/мин) в открытом стакане в течение 3-х часов до полного испарения воды. Полученный обезвоженный органозоль наночастиц фильтруют через бумажный фильтр «желтая лента». Аликвоту органозоля разбавляют в 1000 раз, анализируют спектрофотометрически на содержание серебра и определяют гидродинамический диаметр. Длина волны максимума поглощения наночастиц составила 405 нм, молярный коэффициент поглощения 1.5×104 л/(см×моль), эффективный гидродинамический диаметр 6 нм (по ПЭМ 3 нм), концентрация серебра 0.048 моль/л (фиг. 6), а выход серебра после синтеза составил 80%.

Далее к органозолю постепенно при ручном встряхивании в пробирке добавляют 500 мкл (2.5 об.%) дистиллированной воды. Микроэмульсию оставляют на ночь, затем измеряют электрокинетический потенциал наночастиц (21 мВ) и заливают в электрофоретическую ячейку. Ячейка представляет собой кубическую стеклянную кювету с размером грани 4.5 см, в которой горизонтально расположены два медных плоскопараллельных электрода размером 4*4 см с межэлектродным зазором 1 см. Электрофорез проводили 1,5 часа при напряженности постоянного поля 600 В/см. После того, как жидкий концентрат скопился на нижнем электроде (аноде), электрическое поле отключили, и ячейку наклонили на один из углов, куда и стек весь концентрат. Концентрат отобрали пипеткой. Его объем составил 0,210 мл, концентрация серебра 4.3 моль/л, плотность концентрата 1,30 г/см3, поверхностное натяжение 23,6±0,4 мН/м, вязкость 1,265±0,0004 сП. Эффективный гидродинамический диаметр наночастиц в концентрате составил 6 нм (по ПЭМ 3 нм); длина волны максимума поглощения после электрофореза 405 нм. В результате объем концентрата увеличился на порядок по сравнению со способом-прототипом.

Пример 2 проводят аналогично примеру 1, но количество вводимой воды перед электрофорезом составляет 1,5 об.%. Электрофорез проводили 2 часа при напряженности постоянного поля 300 В/см. Полученный концентрат имел длину волны максимума поглощения такую же, как и в первом примере, объем концентрата составил 0,27 мл, концентрация 3,35 М, плотность 1,23 г/см3. Эффективный гидродинамический диаметр наночастиц в концентрате составил 5,9 нм.

Пример 3 проводят аналогично примеру 1, но количество вводимой воды перед электрофорезом составляет 2 об.%. Электрофорез проводили 2 часа при напряженности постоянного поля 400 В/см. Полученный концентрат имел длину волны максимума поглощения такую же, как и в первом примере, объем концентрата составил 0,28 мл, концентрация 3,27 М, плотность 1,20 г/см3. Эффективный гидродинамический диаметр наночастиц в концентрате составил 6,1 нм.

Все полученные электрофоретические концентраты отличаются высокой стабильностью по отношению к коагуляции, которая контролировалась в течение года периодическим измерением гидродинамического диаметра наночастиц и снятием спектров плазмонного поглощения. Данные параметры были постоянными. Более того, при полном высыхании растворителя в сухом пастообразном композите AOT-Ag при хранении в открытом сосуде в комнатных условиях наночастицы серебра также не подвержены коагуляции. Сухой композит самопроизвольно быстро и полностью редиспергируется в предельных углеводородах, бензоле, толуоле, хлороформе и четыреххлористом водороде даже после длительного (1 год) хранения. Концентрация серебра, размер наночастиц и спектры поглощения при этом не изменяются. Высокая стабильность по отношению к коагуляции позволяет использовать концентрат органозоля для получения устойчивых чернил-красок.

Из полученных концентратов органозоля получали электропроводящие пленки. По 20 мкл концентрата наносят на две стеклянные пластинки; после высыхания первую пластинку помещают в сушильный шкаф и прогревают 2 часа при температуре 200°C (термическая металлизация), вторую опускают на 5-10 секунд в 70%-ный раствор этанола (химическая металлизация). На фиг. 7 приведены микрофотографии СЭМ проводящих пленок, полученных химической металлизацией (1) и термолизом (2). Из них видно, что между наночастицами в результате проведения описанных процедур сформировались коагуляционно-кристаллизационные проводящие контакты. Работа выполнена при финансовой поддержке Российского научного фонда (РНФ) в соответствии с Соглашением №15-13-00080 от 20.05.2015 г. между РНФ, руководителем проекта Булавченко А.И. и ИНХ СО РАН о предоставлении гранта на проведение фундаментальных научных исследований и поисковых научных исследований.


Способ получения стабильных высококонцентрированных органозолей на основе наночастиц серебра для получения электропроводящих пленок
Способ получения стабильных высококонцентрированных органозолей на основе наночастиц серебра для получения электропроводящих пленок
Источник поступления информации: Роспатент

Показаны записи 11-20 из 34.
27.11.2014
№216.013.0a97

Электрохромное устройство с литиевым полимерным электролитом и способ его изготовления

Изобретение относится к прикладной электрохимии, а конкретно к электрохромному устройству с литиевым полимерным электролитом и способу изготовления электрохромного устройства. Предлагается электрохромное устройство с литиевым полимерным электролитом, включающее рабочий электрод в виде пленки...
Тип: Изобретение
Номер охранного документа: 0002534119
Дата охранного документа: 27.11.2014
27.12.2014
№216.013.16f4

Катализатор разложения озона и способ его приготовления

Изобретение относится к катализатору разложения озона для снаряжения авиационных конвертеров, изготовленного из гофрированной алюминиевой фольги с алюмосиликатным покрытием, которое импрегнировано оксидами переходных металлов с добавками благородных металлов или их оксидов, при этом указанное...
Тип: Изобретение
Номер охранного документа: 0002537300
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d23

Полимерный кобальтсодержащий композит

Изобретение относится к наноматериалам, а именно к композитам, содержащим высокореакционные наноразмерные частицы металла, стабилизированные полимерной матрицей. Полимерный кобальтсодержащий композит, полученный термическим разложением нормального или кислого малеата кобальта (II), состоит из...
Тип: Изобретение
Номер охранного документа: 0002538887
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.238e

Способ выращивания монокристаллов калий-бариевого молибдата

Изобретение относится к области химической технологии, а именно к выращиванию кристаллов калий-бариевого молибдата KВа(МоО) из раствора-расплава KВа(МоО) для исследования физических свойств и практического использования. В качестве растворителя используют молибдат калия KMoO, при мольном...
Тип: Изобретение
Номер охранного документа: 0002540555
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.263f

Способ очистки висмута

Изобретение относится к области металлургии редких элементов, а именно к способу глубокой очистки висмута. Способ глубокой очистки висмута от примесей, в частности от примесей свинца и хлора, включает хлорирование расплава висмута барботированием смесью четыреххлористого углерода и инертного...
Тип: Изобретение
Номер охранного документа: 0002541244
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a68

Способ выращивания монокристаллов рубидий-висмутового молибдата

Изобретение относится к области химической технологии и касается получения кристаллов рубидий-висмутового молибдата RbBi(MoO). Кристаллы RbBi(MoO) выращивают из высокотемпературного раствора в расплаве из шихты, содержащей растворитель димолибдатат рубидия и тройной литий-рубидий-висмутовый...
Тип: Изобретение
Номер охранного документа: 0002542313
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3ca8

Способ получения наноразмерных структур кремния

Изобретение относится к технологии получения чистого наноструктурированного кремния и может быть использовано в разных областях полупроводниковой техники. Наноразмерные структуры кремния получают термическим разложением моносилана, которое проводят адиабатическим сжатием смеси 10 об.%...
Тип: Изобретение
Номер охранного документа: 0002547016
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4610

Способ получения диборида хрома

Изобретение относится к способу получения диборида хрома, состоящему в нагреве шихты из смеси окиси хрома, карбида бора и высокодисперсного углеродного материала. При этом нагрев шихты осуществляют при температуре 1400…1600°C и времени 20…25 минут, частицы карбида бора имеют размер не более 1...
Тип: Изобретение
Номер охранного документа: 0002549440
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.51c2

Способ получения наноразмерных материалов

Изобретение может быть использовано в химической технологии. Для получения наноразмерных и наноструктурированных материалов на основе слоистых трихалькогенидов переходных металлов общей формулы MQ, где M=Ti, Zr, Hf, Nb, Та; Q=S, Se, Те, в качестве исходного материала используют порошкообразные...
Тип: Изобретение
Номер охранного документа: 0002552451
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5ffd

Способ выращивания монокристаллов натрий-висмутового молибдата

Изобретение относится к области химической технологии выращивания кристаллов натрий-висмутового молибдата NaBi(MoO) для исследования физических свойств и практического использования. Монокристаллы NaBi(MoO) выращивают путем кристаллизации из высокотемпературного раствора в расплаве шихты,...
Тип: Изобретение
Номер охранного документа: 0002556114
Дата охранного документа: 10.07.2015
Показаны записи 11-20 из 30.
27.11.2014
№216.013.0a97

Электрохромное устройство с литиевым полимерным электролитом и способ его изготовления

Изобретение относится к прикладной электрохимии, а конкретно к электрохромному устройству с литиевым полимерным электролитом и способу изготовления электрохромного устройства. Предлагается электрохромное устройство с литиевым полимерным электролитом, включающее рабочий электрод в виде пленки...
Тип: Изобретение
Номер охранного документа: 0002534119
Дата охранного документа: 27.11.2014
27.12.2014
№216.013.16f4

Катализатор разложения озона и способ его приготовления

Изобретение относится к катализатору разложения озона для снаряжения авиационных конвертеров, изготовленного из гофрированной алюминиевой фольги с алюмосиликатным покрытием, которое импрегнировано оксидами переходных металлов с добавками благородных металлов или их оксидов, при этом указанное...
Тип: Изобретение
Номер охранного документа: 0002537300
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d23

Полимерный кобальтсодержащий композит

Изобретение относится к наноматериалам, а именно к композитам, содержащим высокореакционные наноразмерные частицы металла, стабилизированные полимерной матрицей. Полимерный кобальтсодержащий композит, полученный термическим разложением нормального или кислого малеата кобальта (II), состоит из...
Тип: Изобретение
Номер охранного документа: 0002538887
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.238e

Способ выращивания монокристаллов калий-бариевого молибдата

Изобретение относится к области химической технологии, а именно к выращиванию кристаллов калий-бариевого молибдата KВа(МоО) из раствора-расплава KВа(МоО) для исследования физических свойств и практического использования. В качестве растворителя используют молибдат калия KMoO, при мольном...
Тип: Изобретение
Номер охранного документа: 0002540555
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.263f

Способ очистки висмута

Изобретение относится к области металлургии редких элементов, а именно к способу глубокой очистки висмута. Способ глубокой очистки висмута от примесей, в частности от примесей свинца и хлора, включает хлорирование расплава висмута барботированием смесью четыреххлористого углерода и инертного...
Тип: Изобретение
Номер охранного документа: 0002541244
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a68

Способ выращивания монокристаллов рубидий-висмутового молибдата

Изобретение относится к области химической технологии и касается получения кристаллов рубидий-висмутового молибдата RbBi(MoO). Кристаллы RbBi(MoO) выращивают из высокотемпературного раствора в расплаве из шихты, содержащей растворитель димолибдатат рубидия и тройной литий-рубидий-висмутовый...
Тип: Изобретение
Номер охранного документа: 0002542313
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3ca8

Способ получения наноразмерных структур кремния

Изобретение относится к технологии получения чистого наноструктурированного кремния и может быть использовано в разных областях полупроводниковой техники. Наноразмерные структуры кремния получают термическим разложением моносилана, которое проводят адиабатическим сжатием смеси 10 об.%...
Тип: Изобретение
Номер охранного документа: 0002547016
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4610

Способ получения диборида хрома

Изобретение относится к способу получения диборида хрома, состоящему в нагреве шихты из смеси окиси хрома, карбида бора и высокодисперсного углеродного материала. При этом нагрев шихты осуществляют при температуре 1400…1600°C и времени 20…25 минут, частицы карбида бора имеют размер не более 1...
Тип: Изобретение
Номер охранного документа: 0002549440
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.51c2

Способ получения наноразмерных материалов

Изобретение может быть использовано в химической технологии. Для получения наноразмерных и наноструктурированных материалов на основе слоистых трихалькогенидов переходных металлов общей формулы MQ, где M=Ti, Zr, Hf, Nb, Та; Q=S, Se, Те, в качестве исходного материала используют порошкообразные...
Тип: Изобретение
Номер охранного документа: 0002552451
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5ffd

Способ выращивания монокристаллов натрий-висмутового молибдата

Изобретение относится к области химической технологии выращивания кристаллов натрий-висмутового молибдата NaBi(MoO) для исследования физических свойств и практического использования. Монокристаллы NaBi(MoO) выращивают путем кристаллизации из высокотемпературного раствора в расплаве шихты,...
Тип: Изобретение
Номер охранного документа: 0002556114
Дата охранного документа: 10.07.2015
+ добавить свой РИД