×
13.02.2018
218.016.25d8

Результат интеллектуальной деятельности: Неинвазивный экспресс-анализ концентрации глюкозы в крови

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, а именно к эндокринологии. Для экспресс-анализа концентрации глюкозы крови накладывают термисторы над поверхностной веной головы испытуемого и измеряют натощак и после приема пищи температуру и концентрацию глюкозы в крови. Определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами. Максимальные время и температуру термограммы находят по измеренным избыточным температурам в два момента времени. Предельные температуру и концентрацию глюкозы крови, глюкограммы регистрируют по измеренным концентрациям глюкозы для двух максимальных температур термограммы. Способ повышает точность определения концентрации глюкозы крови за счет исключения методической и динамической погрешности в адаптивном диапазоне. 4 табл., 8 ил.

Предлагаемое изобретение относится к области медицины, в частности к эндокринологии, и может быть использовано для экспресс-анализа концентрации глюкозы крови.

Известен способ неинвазивного определения концентрации глюкозы в крови [см. Патент №2368303 (РФ), А61В 5/021, №2000123186 / Эльбаев А.Д.; Курданов Х.А.; Эльбаева А.Д. - 2007], в котором пациенту измеряют систолическое и диастолическое артериальное давление последовательно на обеих руках, определяют коэффициент корреляции (К), представляющий собой отношение наибольшего из измеренных значений систолического АД к наименьшему из измеренных значений диастолического АД на левой и правой руках, и рассчитывают содержание глюкозы в крови (Р) по формуле Р=0,245⋅ехр(1,9*K), где Р - содержание глюкозы крови, ммоль/л, К - коэффициент корреляции.

На основании приведенной эмпирической формулы в памяти микропроцессора устройства заложена таблица корреляций, которая используется для определения уровня глюкозы в крови. Однако способ не позволяет достичь желаемой точности и не позволяет осуществлять непрерывный мониторинг концентрации глюкозы в крови из-за статистической градуировки.

Известен способ для неинвазивного контроля уровня глюкозы в крови [см. Патент 2180514 (РФ), А61В 5/01 №2001101121/14 / Шмелев В.М., Бобылев В.М. - 20.03.2002], в котором определяют концентрацию глюкозы в крови с помощью измерительного устройства, при этом проводят непрерывный мониторинг концентрации глюкозы в крови путем измерения в области поверхностных вен головы тепловых потоков датчиком измерительного устройства, а концентрацию глюкозы (Xg*) определяют по формуле Xg*=X1*+X2*, где X1*=Wmn(s)Xт*, X2*=КПWmn(s)XП* где XТ* - безразмерное отклонение температуры от установившегося значения, ХП* - безразмерное отклонение теплового потока от установившегося значения, Wmn(s)=1/(TТП+1) - передаточная функция концентрации глюкозы в крови по температуре и тепловому потоку, ТТП - экспериментально определяемая постоянная времени переходного процесса, КП - экспериментально определяемый безразмерный коэффициент, s=d/dt - оператор дифференцирования.

Недостатком данного способа является отсутствие математической модели углеводного обмена, а также недостаточная точность способа вследствие жесткой статистической градуировочной характеристики для неизвестного фантома.

За прототип принят способ для неинвазивного контроля уровня глюкозы в крови [Бобылев В.М. Взаимосвязи температуры тела и концентрации глюкозы крови человека / В.М. Бобылев, В.М. Шмелев // Сетевое электронное научное издание Medline.Ru - СПб., 2006. Т. 7, С. 101-107], в котором искомая математическая модель концентрации глюкозы крови с температурой тела находится как «функция отклика» характеристик рассматриваемой динамической системы в ответ на импульсное воздействие. При этом проводят непрерывный мониторинг концентрации глюкозы в крови путем измерения в области поверхностных вен головы тепловых потоков датчиком измерительного устройства, а величину гликемии (Gl) определяют по формуле Gl(t)=K⋅[T(t-τ)-Т(0)], где K - экспериментально определяемый коэффициент пропорциональности, Т(0) - значение температуры, соответствующее Gl=0, τ - время запаздывания гликемии по отношению к температуре.

Недостатками прототипа являются низкая метрологическая эффективность из-за высокой погрешности в широком диапазоне информативных параметров измерения, обусловленной фиксированной статистической градуировочной характеристикой.

Технической задачей способа является повышение точности определения концентрации глюкозы крови за счет исключения методической и динамической погрешности в адаптивном диапазоне.

Техническая задача достигается неинвазивным экспресс-анализом концентрации глюкозы крови по глюкограмме, калибруемой в нормированных границах адаптивного диапазона оптимальными максимальными температурами термограмм известных пациентов.

В неинвазивном экспресс-анализе концентрации глюкозы крови, заключающемся в том, что накладывают термисторы над поверхностной веной головы испытуемого и измеряют натощак и после приема пищи температуру и концентрацию глюкозы в крови, в отличие от прототипа, определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами, параметры термограммы: максимальное время Т и максимальную температуру Е находят по измеренным избыточным температурам Ui для i=1,2 в два момента времени tI и t2=2tI, параметрами глюкограммы служат: предельная температура Е0 и предельная концентрация глюкозы Р0 крови, которые регистрируют по измеренным концентрациям глюкозы Pj, где j=1,2 для двух максимальных температур E1 и кратной E2=nE1 термограммы U(t)

с тождественными границам диапазона параметрами: максимальным временем T и максимальной температурой Е

а глюкограмма

отражает физику натурного эксперимента с тождественными границам диапазона параметрами: предельной температурой Е0 и предельной глюкозой Р0

где

Сущность предлагаемого способа поясняется на фиг. 1-8.

Предлагаемый способ перед измерением включает 2 этапа: 1 - калибровку параметров термограммы и 2 - калибровку параметров глюкограммы.

1 этап:

а - При обследовании пациента натощак на начальном этапе накладывают термисторы над поверхностной веной головы и измеряют значение температуры в начальный момент времени. Избыточные температуры, с учетом начальной температуры , определяются соотношением:

б - После принятия пациентом глюкозосодержащей пищи регистрируют изменение температуры Ui для i=1,2 в течение времени t1 и бинарном t2=2t1, по которым рассчитывают предельные параметры термограммы (фиг. 1).

в - Предельные параметры находят априори для известных пациентов с нормированными границами адаптивного диапазона калибровочной характеристики температуры U от времени t (термограмме):

с учетом параметров: Е - максимальная температура и Т - максимальное время.

Максимальное время Т термограммы (2) находят из системы уравнений:

Поделим второе уравнение системы (3) на первое, учитывая, что t2=2t1:

После сокращения на знаменатель и логарифмирования находим параметр термограммы Т - максимальное время:

Максимальную температуру Е термограммы (2) определяют из инверсной относительно (3) системы уравнений:

После деления второго уравнения системы (5) на первое

учитывая бинарность интервалов получим соотношение:

что соответствует после экспоненцирования квадратному уравнению:

Отсюда находим алгоритм оптимизации второго параметра калибровочной характеристики термограммы E - максимальную температуру:

Максимальные температуры (6) термограммы (2) служат на 2 этапе нормированными границами адаптивного диапазона исследуемой глюкограммы для ее отождествления с эквивалентом натурного эксперимента за счет нахождения оптимальных параметров эталонной глюкограммы.

2 этап:

а - Определяют концентрацию Р глюкозы крови через максимальную температуру Е по калибровочной характеристике глюкограммы, ммоль/л:

с учетом информативных параметров: Р0 - предельная глюкоза крови и Е0 - предельная температура (см. фиг. 2).

Закономерности параметров Р0 (фиг. 2, прямая 2) и Е0 (фиг. 2, прямая 3) тождественны оптимальному эквиваленту глюкограммы (7):

что доказывают предельные решения

b - Калибровочную характеристику (7) вводят априори для двух известных пациентов с нормированными границами адаптивного диапазона концентрации глюкозы Р1, Р2 крови, для которых определяют максимальные температуры E1, E2 на первом этапе. По двум известным концентрациям глюкозы и регистрируемым максимальным температурам Р1, Е1 и Р2, Е2 находят предельную глюкозу Р0 крови и предельную температуру Е0 (фиг. 2).

Параметр глюкограммы (7) предельную температуру Е0 находят из системы уравнений

Поделим второе уравнение системы (8) на первое

и после логарифмирования находим предельную температуру Е0 глюкограммы:

Предельную глюкозу Р0 определяют из инверсной относительно (8) системы уравнений

после деления второго уравнения системы (10) на первое

Принимая во внимание кратность отношения , получим логарифмическое уравнение

что соответствует после экспоненцирования степенному уравнению

После деления на знаменатель понижают на единицу степень

и находят второй параметр глюкограммы Р0 - предельную глюкозу

К преимуществам предлагаемого экспресс-анализа по сравнению с прототипом относится повышение точности способа за счет исключения методической и динамической погрешностей посредством калибровки глюкограммы в нормированных границах адаптивного диапазона оптимальными максимальными температурами термограмм известных пациентов.

Докажем метрологическую эффективность предлагаемого способа относительно прототипа по достоверности измерений в адаптивном диапазоне для исследуемой зависимости.

1. Оценка методической погрешности

а - Термограмма (фиг. 1 и фиг. 3, кривые 1, 2)

Для первого пациента найдем по бинарным интервалам t1=8, t2=16 измеренные температуры , (фиг. 1), с учетом начальной температуры избыточные температуры Ui=0.26, 0.23, а по алгоритмам (4) и (6) оптимальные параметры Е1=0.664, Т=9.317 термограммы (фиг. 3).

По найденным параметрам E1 и T для первого пациента находим из (2) калибровочную характеристику Uƒ:

Для второго пациента найдем по бинарным интервалам t1=8, t2=16 измеренные температуры , (фиг. 1) с учетом начальной температуры избыточные температуры Ui=0.33, 0.03, а по алгоритмам (4) и (6) оптимальные параметры Е2=0.857, Т=9.317 термограммы.

По найденным параметрам Е2 и Т для второго пациента находим (фиг. 3, кривая 2) из (2) калибровочную характеристику Uj:

Оценим достоверность (фиг. 4) к эталонной (экспериментальной) Uэ (фиг. 3, кривая 1) калибровочной характеристики Ui (фиг. 3, кривая 2) по относительной погрешности εi:

Систематизируем результаты в табл. 1 для анализа методической погрешности параметров термограммы предлагаемого решения (u) и прототипа (n) по эффективности

1. Оценка термограмм

Табл. 1 показывает, что параметры инновации Eju и Tju однозначно определяют термограммы с минимальной погрешностью не более 0.12% и 0.06% (фиг. 4), а у прототипа Ejn и Tjn погрешность определения 5%. Тогда эффективность (12а) калиброванной термограммы предлагаемого решения отличается в 42-83 раза, т.е. на два порядка выше прототипа, регламентированного статистическим анализом множества ненормированных переменных по жесткой градуировочной характеристике среднестатистического фантома.

б - Глюкограмма

Найдем для известных значений P1=3, Р2=6 и определенных максимальных значений температуры E1=0.664, Е2=0.857 по алгоритмам (9) и (11) оптимальные параметры Е0=0.273, Р0=0.259 глюкограммы (фиг. 5, кривая 1).

По найденным параметрам Е0 и Р0 находим из (7) калибровочную характеристику Рj (фиг. 5, кривая 2):

Оценим достоверность (фиг. 6) глюкограммы прототипа Рn (фиг. 5, кривая 3) относительно эталонной (экспериментальной) Рэ (фиг. 5, кривая 1) по относительной погрешности ε:

Для анализа глюкограмм систематизируем параметры в табл. 2.

2. Оценка глюкограмм

Табл. 2 показывает, что параметры Е0 и Р0 однозначно определяют эталонную и откалиброванную глюкограммы с минимальной методической погрешностью не более 0,037% (тождественно фиг. 4), тогда как у прототипа погрешность определения 5% в диапазоне (Е12) здорового пациента и 500% в группах риска (фиг. 6) из-за статистического анализа с линейной аппроксимацией (фиг. 5, график 3).

3. Оценка динамической погрешности

a - Термограмма

Динамическая погрешность (фиг. 7) определяется нелинейностью η1 термограмм, регламентируемой отношением интервалов времени переменных t прототипа и нормированным максимальным временем предлагаемого решения Т (фиг. 1, 3):

Нелинейность (14) заявляемого решения η1u тождественна единичному эквиваленту (фиг. 7, кривая 1), т.к.

В прототипе используются ненормированные переменные времени t:

а нелинейности термограмм (фиг. 1) прототипа изменяются по логарифмическому закону

Воспроизводимость результатов термограммы (фиг. 3) представлена в табл. 3.

3. Термограммы

Из табл. 3 видно, что в предлагаемом решении параметры Е, T=const (фиг. 1) нормированы границами адаптивного диапазона известных пациентов. Нелинейность предлагаемого решения регламентирована единичному эквиваленту (фиг. 7, прямая 1) в отличие от переменной нелинейности прототипа, изменяющейся по логарифмическому закону из-за множества ненормированных переменных термограмм ti, Ui (фиг. 7, кривая 2).

б - Глюкограмма

Систематическая погрешность определяется нелинейностью η2 глюкограмм (фиг. 5), определяемые отношением концентраций глюкозы Р прототипа и нормированной предельной глюкозой предлагаемого решения P0.

Нелинейность (15) заявленного решения η2u тождественна единичному эквиваленту (фиг. 8, прямая 1), т.к.

В прототипе используются ненормированные значения концентраций глюкозы Р:

а нелинейности прототипа изменяются по экспоненциальному закону (фиг. 8, кривая 2).

Воспроизводимость результатов термограммы представлена в табл. 4.

4. Глюкограммы

Из табл. 4 следует, что в заявленном решении параметры E0=P0=const нормированы границами адаптивного диапазона известных пациентов. Нелинейность предлагаемого решения регламентирована единичному эквиваленту (фиг. 8, прямая 1) в отличие от переменной нелинейности прототипа, изменяющейся по экспоненциальному закону (фиг. 8, кривая 2) из-за множества ненормированных переменных термограмм Еi, Pi.

4. Оценка ширины диапазона

Эффективность по диапазону ηD - это отношение диапазона Du способа калибровки к диапазону Dn градуировки прототипа (см. фиг. 5, графики 2, 3):

Из формулы (16) видно, что эффективность по диапазону предлагаемого решения минимум в 5 раз превосходит прототип.

5. Оценка оперативности

Повышение оперативности предполагаемой инновации доказывает эффективность времени измерения t. В предлагаемом способе t≤Т измерения не превышает максимальное время (фиг. 1), а для прототипа в 3-5 раз больше tn=(3-5)Т для определения максимальной температуры с погрешностью 5-1%.

Из эффективности по времени для погрешности (5-1)% следует, что оперативность предлагаемого способа в 3-5 раз выше известных способов.

Таким образом, неинвазивный экспресс-анализ концентрации глюкозы крови по глюкограмме, калибруемой в нормированных границах адаптивного диапазона оптимальными максимальными температурами термограмм известных пациентов, в отличие от известных решений, повышает точность решения на несколько порядков благодаря устранению методической и динамической погрешности, а также увеличения эффективности по диапазону минимум в 5 раз и оперативности не менее чем в 3 раза, что в итоге повышает метрологическую эффективность экспресс-анализа концентрации глюкозы по температуре с априори заданной точностью.


Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Неинвазивный экспресс-анализ концентрации глюкозы в крови
Источник поступления информации: Роспатент

Показаны записи 91-100 из 133.
19.06.2019
№219.017.83eb

Способ определения коэффициента пуассона для стенки кровеносного сосуда на основе эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности к способам оценки состояния сердечно-сосудистой системы посредством анализа результатов эндоскопической ОКТ стенок кровеносных сосудов. Способ определения коэффициента Пуассона для стенки кровеносного сосуда на...
Тип: Изобретение
Номер охранного документа: 0002691619
Дата охранного документа: 14.06.2019
20.06.2019
№219.017.8d14

Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления

Изобретение предназначено для непрерывного весового дозирования сыпучих материалов. Сущность: устройство содержит основание (1), состоящее из неподвижной платформы, на которой шарнирно закреплена подвижная платформа (2). На подвижной платформе (2) установлены лоток (4) и вибратор (7),...
Тип: Изобретение
Номер охранного документа: 0002691786
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8ddc

Установка для сушки пастообразных материалов в закрученном взвешенном слое полидисперсных инертных тел

Изобретение относится к области химической промышленности и служит для сушки высоковлажных пастообразных материалов. Сушилка для пастообразных материалов на инертных телах содержит биконическую камеру, сопряженную с цилиндрической сепарационной камерой, слой инертных тел, барабан с...
Тип: Изобретение
Номер охранного документа: 0002691892
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e11

Корнеклубнерезка

Изобретение относится к сельскому хозяйству, в частности к устройствам для резания корнеклубнеплодов на пластинки на животноводческих фермах и комплексах. Корнеклубнерезка содержит кожух с загрузочной и выгрузной горловинами, внутри которого неподвижно установлен вертикальный режущий барабан,...
Тип: Изобретение
Номер охранного документа: 0002692052
Дата охранного документа: 19.06.2019
22.06.2019
№219.017.8e94

Способ цветового доплеровского картирования в эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности измерений характеристик тока крови в живом организме. Способ цветового доплеровского картирования в эндоскопической ОКТ содержит сканирование исследуемого объекта пучком излучения, получение первого набора...
Тип: Изобретение
Номер охранного документа: 0002692220
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.91f1

Способ ангиографии в эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности измерений для оценок состояния сердечно-сосудистой системы. Способ ангиографии в эндоскопической оптической когерентной томографии содержит получение набора данных оптической когерентной томографии, содержащего...
Тип: Изобретение
Номер охранного документа: 0002692225
Дата охранного документа: 21.06.2019
23.07.2019
№219.017.b723

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к медицине и может быть использовано для определения динамики изменения скорости оседания эритроцитов (СОЭ). Для этого проводят смешивание исследуемой пробы крови с антикоагулянтом. Полученный раствор помещают в гематокритный капилляр и центрифугируют. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002695072
Дата охранного документа: 19.07.2019
15.08.2019
№219.017.bfed

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют...
Тип: Изобретение
Номер охранного документа: 0002697227
Дата охранного документа: 13.08.2019
16.08.2019
№219.017.c0de

Конструкция реакционно-ректификационного аппарата периодического действия для осуществления термокаталитических процессов

Изобретение относится к конструкциям массообменных аппаратов периодического действия и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Реакционно-ректификационный аппарат включает реакционную кубовую часть и сочлененную с ней разъемным соединением...
Тип: Изобретение
Номер охранного документа: 0002697465
Дата охранного документа: 14.08.2019
03.09.2019
№219.017.c67d

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн объемной...
Тип: Изобретение
Номер охранного документа: 0002698986
Дата охранного документа: 02.09.2019
Показаны записи 41-49 из 49.
10.07.2018
№218.016.6eea

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к области медицины, а именно к лабораторной клинической диагностике и может быть использовано для проведения лабораторных анализов динамики изменения скорости оседания эритроцитов, а также в исследовательских целях. Способ включает определение постоянной времени по...
Тип: Изобретение
Номер охранного документа: 0002660710
Дата охранного документа: 09.07.2018
26.09.2018
№218.016.8bb2

Способ тонометрии глаза

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для тонометрии глаза. Воздействуют на глаз вибрирующим датчиком. Приближают вибрирующий датчик к глазу до наступления контакта с ним. Действуют им на глаз до момента исчезновения сигнала на выходе вибрирующего...
Тип: Изобретение
Номер охранного документа: 0002667962
Дата охранного документа: 25.09.2018
13.10.2018
№218.016.9106

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине, может быть использовано для оценки функционального состояния организма. В качестве составляющих импеданса биологического объекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта. При этом на биообъект подают импульс...
Тип: Изобретение
Номер охранного документа: 0002669484
Дата охранного документа: 11.10.2018
13.10.2018
№218.016.9114

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине и может быть использовано для определения функционального состояния системы гемостаза. Для этого проводят измерение амплитуды записи процесса свертывания крови в его начале. Определяют показатели начала и конца процесса свертывания электрокоагулограммы крови....
Тип: Изобретение
Номер охранного документа: 0002669347
Дата охранного документа: 10.10.2018
16.02.2019
№219.016.bb3e

Способ определения ударного объема сердца

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца выполняют наложение двух электродов на участки тела и регистрируют сопротивление между электродами. Ударный объем сердца определяют по исследуемой...
Тип: Изобретение
Номер охранного документа: 0002679948
Дата охранного документа: 14.02.2019
01.06.2019
№219.017.728a

Способ и система регулирования температуры и давления тензомостом

Изобретения относятся к измерительной технике, в частности к регулированию температуры и давления тензомостом. В способе регулирования температуры и давления тензомостом, включающем подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U, при смене...
Тип: Изобретение
Номер охранного документа: 0002690090
Дата охранного документа: 30.05.2019
23.07.2019
№219.017.b723

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к медицине и может быть использовано для определения динамики изменения скорости оседания эритроцитов (СОЭ). Для этого проводят смешивание исследуемой пробы крови с антикоагулянтом. Полученный раствор помещают в гематокритный капилляр и центрифугируют. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002695072
Дата охранного документа: 19.07.2019
15.08.2019
№219.017.bfed

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют...
Тип: Изобретение
Номер охранного документа: 0002697227
Дата охранного документа: 13.08.2019
03.09.2019
№219.017.c67d

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн объемной...
Тип: Изобретение
Номер охранного документа: 0002698986
Дата охранного документа: 02.09.2019
+ добавить свой РИД