×
13.02.2018
218.016.24d2

Результат интеллектуальной деятельности: СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002642503
Дата охранного документа
25.01.2018
Аннотация: Использование: для определения параметров деталей, изготовленных из композитного материала. Сущность изобретения заключается в том, что определяют характеристики продольной ультразвуковой волны, проходящей по пути внутри детали, при этом измеряют время прохождения продольной ультразвуковой волны, пропускаемой деталью, и измеряют время прохождения прошедшей волны путем наблюдения начала волны. Технический результат: обеспечение возможности быстро и достоверно определять параметры деталей, изготовленных из композитного материала. 4 з.п. ф-лы, 10 ил.

Область техники, к которой относится изобретение

Изобретение находится в области способов характеризации деталей, изготовленных из композитного материала, в машиностроении, в частности в авиационной промышленности.

Уровень техники

Наряду с тем, что заданная деталь разрабатывается, необходимо знать содержание волокна и содержание смолы в заданной зоне детали. Чтобы это сделать, как известно, измеряют скорость распространения и затухания продольной ультразвуковой волны, проходящей через деталь.

Одним способом измерения этих величин является использование ультразвукового преобразователя в приемопередающем режиме. Внимание тогда уделяют зоне детали, которая определяется взаимно параллельными, передней и задней поверхностями. Продольную волну направляют так, чтобы распространялась перпендикулярно двум поверхностям, частично отражаясь и, также, затухая в материале детали. Таким образом, наблюдают первый сигнал (эхо), приходящий от передней поверхности, а также второй сигнал (эхо), приходящий от задней поверхности, и называемый отраженным сигналом. Преобразователь получает отраженную волну, и, тогда, возможно путем наблюдения двух отраженных компонентов проследить и скорость распространения, и затухание волны в материале.

Все-таки, такое решение является непригодным для материалов, которые сильно поглощают ультразвуковые волны. Это применяется, например, к трехмерным 3D тканевым композитам со структурой, которая является негомогенной и анизотропной. Для деталей промышленных толщин не видно никакого отраженного сигнала в записях, сделанных на таких материалах из-за сильного поглощения.

Таким образом, необходимо разработать способ, пригодный для применения к деталям, изготовленным из композитных материалов, и дающий возможность характеризовать большое число деталей независимо от их толщины или их поглотительной сущности.

Раскрытие изобретения

Изобретение относится к способу характеризации детали, изготовленной из композитного материала, причем способ включает в себя этап определения характеристики прохождения продольной ультразвуковой волны по пути внутри детали, и отличается тем, что измеряют время прохождения волны, пропущенной деталью.

С помощью этой технологии преодолевается проблема, связанная с отсутствием отраженного сигнала в измерениях в приемопередаточном режиме.

Согласно преимущественной характеристике, время прохождения пропущенной волны измеряют путем наблюдения начала волны.

С помощью этой характеристики возможно игнорировать значительно усиленные проблемы фазового сдвига и деформации синусоидального сигнала используемой ультразвуковой волны, вызванные толстыми материалами, или вызванные сложной негомогенной, а также анизотропной структурой определенных композитных материалов.

При осуществлении определяют скорость распространения продольной ультразвуковой волны, проходящей в детали.

Это обеспечивает информацию, которая полезна для определения содержания волокон и содержания смолы в композитном материале, информацию, которая может быть использована в разработке исследуемой детали.

В другом осуществлении, которое может быть скомбинировано с предыдущим осуществлением, амплитуду прошедшей волны также измеряют, для того чтобы определять затухание по всей длине или единице длины, которому подвергается продольная ультразвуковая волна при прохождении в детали.

Это обеспечивает информацию, которая является полезной для определения содержания пор, которая может быть использована в разработке исследуемой детали.

Предпочтительно, измеряют время распространения ультразвуковой волны, прошедшей в отсутствие детали, в качестве времен распространения ультразвуковых волн, отраженных соответственно первой лицевой стороной детали и второй лицевой стороной детали, для того чтобы определять размер детали, пропуская продольную ультразвуковую волну, проходящую по пути в детали.

С помощью этой характеристики, которая является оптимальной, лишь преимущественной, точное измерение получает размер детали, через который проходит прошедшая волна, а такой размер является довольно изменчивым в деталях, изготовленных из композитного материала, так, это может быть полезным, чтобы знать точную величину для данной детали, для конкретного пути, сопровождаемого используемой ультразвуковой волной.

В частности, способ осуществляется для детали, изготовленной из 3D тканевого композитного материала.

Такие материалы являются особенно перспективными для характеризации из-за их негомогенности и из-за их анизотропии. С помощью изобретения возможно исследовать их быстро и достоверно, особенно, когда детали находятся в разработке.

Краткое описание чертежей

Фиг. 1 показывает предварительное действие в контексте осуществления способа изобретения.

Фиг. 2 показывает три стадии этапа измерения толщины, осуществляемого в изобретении.

Фиг. 3-5 показывают сигналы, записанные во время трех стадий из Фиг. 2.

Фиг. 6 показывает стадию наблюдения прошедшей волны во время способа изобретения.

Фиг. 7 показывает сигнал, измеренный во время стадии из Фиг. 6.

Фиг. 8-10 показывают сигналы, полученные во время стадий из Фиг. 2-6 для проставки, изготовленной из композитного материала.

Осуществление изобретения

Как показано на Фиг. 1, два плоских ультразвуковых датчика, работающих в режиме передачи, устанавливают в положение на одной прямой. Это приведение в положение на одной прямой составляет предварительную стадию E0. Датчики разделены жидкостью, такой как вода. Преобразователь 10 работает в режиме излучения, а датчик 20 в режиме приема. Сигнал, полученный датчиком 20, проходит через максимум после последовательных юстировок осей Oy и Oz, а также углов θ и ϕ.

На Фиг. 2 представлено измерение толщины материала исследуемой детали, обозначенной 30. Это измерение должно быть с точностью до одного микрометра.

Первая стадия Е1 состоит в измерении времени прохождения волны, прошедшей через воду между двумя преобразователями 10 и 20, в отсутствие детали. Вторая стадия состоит в измерении времени прохождения волны, отраженной первой лицевой поверхностью, обозначенной 31, детали 30, преобразователем 10, работающим как приемопередатчик, обращенным к поверхности 31. Третья стадия состоит в измерении времени прохождения волны, отраженной второй поверхностью, обозначенной 32, детали 30, преобразователем 20, работающим, в свою очередь, как приемопередатчик, и обращенным к поверхности 32.

Время распространения измеряют в каждом случае путем наблюдения начала сигнала, а не дуги сигнала. Это делает возможным для оператора игнорировать любое явление, связанное с возможным фазовым сдвигом сигнала. Конкретно, в присутствии многих отражений появляются фазовые сдвиги. Это также случается, когда после отражения сигнал изменяется по направлению. Форма дуг сигнала модифицируется, и трудно получать точную величину времени распространения. Вот почему предлагается измерять сигнал путем наблюдения исключительно начала сигнала.

Поскольку скорость распространения волны в воде Vwater является известной, то возможно путем вычитания получать толщину детали из стадий El, E2 и E3, путем использования формулы X2=(tХ1+Х2+Х3-tX3-tХl)×Vwater, где Х1 – расстояние между преобразователем 10 и поверхностью 31, Х2 – толщина детали в точке воздействия пучка, а Х3 – расстояние между преобразователем 20 и поверхностью 32, и где tХ1+Х2+Х3, tХl и tX3 являются временами прохождения, измеренными во время стадий Е1, Е2 и Е3 соответственно.

Фиг. 3-5 показывают графики, отображенные во время стадий Е1, Е2 и Е3, соответственно, с водой при 22°C, волной с частотой 5 мегагерц (МГц) (дающей скорость распространения 1486,45 метров в секунду (м/с) в воде), для проставки, имеющей толщину 76,20 миллиметров (мм) и изготовленной из титана TA6V. Время прохождения волны измеряют на основе начала волны, данных соответствующими ссылками 100, 119 и 120.

Получены следующие результаты:

tХ1+Х2+Х3 92,72 микросекунды (мкс)

tX3 = 2,98/2 = 26,49 мкс

tХl = 26,49/2 = 14,97 мкс

Х2 = (tХ1+Х2+Х3-tХ3-tХ1)Vwater

Х2 = (92,72 10-6 – 26,49 10-6 – 14,97 10-6) 1486,54

X2 = 76,20 мм

Толщина, измеренная толщиномером, составляет в действительности 76,20 мм, т.е. 3".

Фиг. 6 показывает стадию Е4, во время которой наблюдается волна, пропущенная деталью 30. Таким образом, преобразователь 10 является работающим в режиме излучения, наряду с тем, что преобразователь 20 является работающим в режиме приема. Падающая волна обозначена 40 на фигуре, волна, распространяющаяся в детали 30, обозначена 41, а прошедшая волна обозначена 42.

Время прохождения волны в детали 30 выражается в виде t'Х2 = t-(tХ1+tХ3). Зная Х2, как определено заранее, скорость распространения волны в материале выражается в виде Vmaterial = Х2/t'Х2.

Фиг. 7 показывает сигнал, наблюдаемый во время стадии Е4 для пространственной проставки толщиной 76,20 мм, изготовленной из титана (TA6V), даже с волной при 5 МГц. Время прохождения волны измеряют на основе начала волны, обозначенного 130.

Полученные величины являются следующими:

t = 53,80 мкс

t'Х2 = (53,80 10-6 – 26,49 10-6 – 14,97 10-6)

t'Х2 = 12,34 мкс

V=76,20 10-3/l2,34 10-6

И, в конце концов, численное значение скорости составляет V = 6175,04 м/с. Эта величина подтверждена с помощью обычного измерения скорости распространения, для того чтобы проверить достоверность результатов способа.

Фиг. 8-10 показывают сканограммы, полученные для стадий Е2, Е3 и Е4 для композитной ступенчатой проставки, имеющей толщину 47,09 мм с излучением преобразователя с 1 МГц. Время прохождения волны измерено на основе начал волн, данных соответствующими ссылками 140, 150 и 160.

Полученные величины являются следующими:

tХ1+Х2+Х3 = 90,22 мкс

t = 74,90 мкс

tX3 = 52,42/2 = 26,41 мкс

tХl = 64,68/2 = 32,34 мкс

Х2 = (tХ1+Х2+Х3-tХ3-tХ1)Vwater

Х2 = (90,22 10-6 – 26,21 10-6 – 32,34 10-6) 1486,54

Х2 = 31,67 10-6 1488,76

X2 = 47,078 мм

t'Х2 = t - (tХ1 + tХ3)

t'X2 = (74,90 10-6 – 26,21 10-6 – 32,34 10-6)

t'Х2 = 16,35 мкс

Vcomposite = X2/t'Х2

Vcomposite = 47,078 10-3/16,35 10-6

И, в конце концов, численное значение скорости составляет Vcomposite = 2879,4 м/с.

Затем внимание уделено затуханию продольной волны в материале.

Выражение для амплитуды волны, прошедшей от излучателя к приемнику, записывается как следующее: Y1 = Amaxe-α1(Х1+Х2+Х3), где Амах представляет максимальную амплитуду на поверхности преобразователя, и α1 представляет собой затухание волны в воде.

Выражение для амплитуды волны, прошедшей от излучателя к приемнику после прохождения через материал, записано как следующее: Y2 = Amaxe-α1(Х1+Х3)e-α2Х2t12t21, где α2 представляет собой затухание волны в материале, t12 является коэффициентом амплитудного пропускания от воды к материалу, а t21 является коэффициентом амплитудного пропускания от материала к воде.

Выражение для продукта t12t21 является функцией акустического импеданса материала Z2 = ρ2V2 и акустического импеданса воды Z1 = ρ1V1. В выражении акустического импеданса ρ представляет плотность и V представляет скорость распространения продольной волны с обсуждаемой частотой.

Амплитудное отношение Y1/Y2 записывается как следующее:

Из которой возможно вывести выражение для затухания в материале:

Первое осуществление относится к проставке из композитного материала, имеющего толщину 47,09 мм, использующему волну с 2,25 МГц.

Численные значения для этого осуществления являются следующими:

ρ2 = 1525, 71 килограмм на кубический метр (кг/м3)

V2 = 2946,75 м/с

Z2 = 4,39316 мегаом на переменном токе (MΩac)

ρwater = 997.77 кг/м3

Vwater = I486,54 м/c

Zwater = 1,48322 MΩac

t12 t21 = 0,75478

Х2 = 47,078 мм (точное ультразвуковое измерение)

Y1 = 643,2 милливольт (мВ)

Y2 = 15,885 мВ

αwater2,25Мгц = 0,972 непера на метр (Нп/м)

α2 = 73,61 Нп/м.

Второе осуществление относится к проставке из композитного материала, имеющей толщину 47,09 мм, использующее волну с 1 МГц.

ρ2 = 1525,71 кг/м3

V2 = 2879,39 м/с

Z2 = 4,39311 MΩac

ρwater = 997,77 кг/м3

Vwater = I486,54 м/c

Zwater = 1,48322 MΩac

t12t21 = 0,75479

Х2 = 47,078 мм (точное ультразвуковое измерение)

Y1 = 370,25 мВ

Y2 = 16,395 мВ

αwater1Мгц = 0,682 Нп/м

α2 = 60,92 Нп/м.

Изобретение не ограничивается описанными реализациями, а распространяется на любой вариант в пределах объема формулы изобретения.


СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 331-340 из 928.
27.07.2015
№216.013.66ad

Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата

Способ предназначен для контроля уровня масла, содержащегося в баке двигателя летательного аппарата, и согласно изобретению содержит этапы, на которых: - для, по меньшей мере, двух заранее определенных фаз работы двигателя, в течение, по меньшей мере, одного полета летательного аппарата:...
Тип: Изобретение
Номер охранного документа: 0002557838
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.671a

Поворотная конструкция типа эндоскоп

Изобретение относится к энергетике. Гибкая поворотная конструкция неразрушающего контроля содержит продольный корпус и привод, позволяющий изменять изгиб части продольного корпуса, причемпривод удерживается держателем, сопряженным с продольным корпусом, дистальная часть которого расположена в...
Тип: Изобретение
Номер охранного документа: 0002557947
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6756

Способ обнаружения повреждения, по меньшей мере, одного опорного подшипника двигателя

Заявленное изобретение относится к области измерительной техники, и может быть использовано для контроля износа двигателя. Способ содержит следующие этапы: в течение всего периода измерения Р считывают текущий вибрационный сигнал (Vc) механической вибрации компонентов двигателя; в течение...
Тип: Изобретение
Номер охранного документа: 0002558007
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67fd

Газотурбинный двигатель с устройством для блокировки вращения сегмента направляющего аппарата в картере и блокировочный штифт, препятствующий вращению

Газотурбинный двигатель включает устройство блокировки вращения сегмента направляющего соплового аппарата, установленного внутри кольцевого картера газотурбинного двигателя, и теплозащитный лист, установленный между внутренней стенкой картера и наружной стенкой сегмента направляющего аппарата....
Тип: Изобретение
Номер охранного документа: 0002558174
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.68ea

Открытый воздушный винт для турбомашины

Изобретение относится к области авиации, в частности к конструкциям турбовинтовых двигателей. Турбомашина содержит, по меньшей мере, один открытый воздушный винт, имеющий лопасти с регулируемым углом установки, замки которых заходят снаружи в радиальное гнездо кольцевого элемента ротора и...
Тип: Изобретение
Номер охранного документа: 0002558411
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a19

Способ определения крутящего момента и/или угловой скорости вращающегося вала и устройство для выполнения способа

Изобретения относятся к измерительной технике и могут быть использованы для измерения крутящего момента и угловой скорости вращающегося вала. Способ содержит этапы генерации первого и второго аналоговых сигналов с помощью датчика, генерирующего сигнал при прохождении перед ним зуба одного или...
Тип: Изобретение
Номер охранного документа: 0002558714
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6bb5

Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя

Группа изобретений относится к измерительной технике, в частности к средствам измерений крутильных колебаний. Способ содержит этапы, на которых получают колебательный сигнал ускорения от акселерометра, расположенного на неподвижной детали турбинного двигателя, оценивают частотный спектр...
Тип: Изобретение
Номер охранного документа: 0002559131
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cf5

Способ изготовления лопатки с внутренними каналами из композитного материала и лопатка турбомашины из композитного материала

Группа изобретений относится к способу изготовления лопатки (10) турбомашины из композитного материала и лопатке турбомашины из композитного материала. Лопатка содержит волокнистую деталь упрочнения, получаемую путем переплетения первого множества волокон и второго множества волокон. Волокна...
Тип: Изобретение
Номер охранного документа: 0002559451
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d65

Устройство для измерения температуры в проточном канале первичного потока двухконтурного турбореактивного двигателя

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в первичном потоке двухвального двухконтурного турбореактивного двигателя. Изобретение предоставляет устройство для измерения температуры на входе компрессора в проточном канале первичного потока...
Тип: Изобретение
Номер охранного документа: 0002559563
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d8c

Оснастка для литья под давлением детали

Изобретение относится к литью под давлением детали, в частности выплавляемой модели. Оснастка содержит два блока(4, 21), в которых выполнены полости (5, 22), форма которых после совмещения блоков (4, 21) соответствует форме отливаемой детали (26). По меньшей мере один (4) из блоков оснащен...
Тип: Изобретение
Номер охранного документа: 0002559602
Дата охранного документа: 10.08.2015
Показаны записи 331-340 из 668.
27.07.2015
№216.013.668a

Способ ремонта фланца картера и картер для турбомашины

При ремонте фланца картера турбомашины, содержащего отверстие для болта крепления оборудования и выполненного из материала, не поддающегося сварке, выполняют зенкованное углубление во фланце вокруг отверстия для прохождения болта. Затем анодируют дно зенкованного углубления, размещают шайбу в...
Тип: Изобретение
Номер охранного документа: 0002557803
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66ad

Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата

Способ предназначен для контроля уровня масла, содержащегося в баке двигателя летательного аппарата, и согласно изобретению содержит этапы, на которых: - для, по меньшей мере, двух заранее определенных фаз работы двигателя, в течение, по меньшей мере, одного полета летательного аппарата:...
Тип: Изобретение
Номер охранного документа: 0002557838
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.671a

Поворотная конструкция типа эндоскоп

Изобретение относится к энергетике. Гибкая поворотная конструкция неразрушающего контроля содержит продольный корпус и привод, позволяющий изменять изгиб части продольного корпуса, причемпривод удерживается держателем, сопряженным с продольным корпусом, дистальная часть которого расположена в...
Тип: Изобретение
Номер охранного документа: 0002557947
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6756

Способ обнаружения повреждения, по меньшей мере, одного опорного подшипника двигателя

Заявленное изобретение относится к области измерительной техники, и может быть использовано для контроля износа двигателя. Способ содержит следующие этапы: в течение всего периода измерения Р считывают текущий вибрационный сигнал (Vc) механической вибрации компонентов двигателя; в течение...
Тип: Изобретение
Номер охранного документа: 0002558007
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67fd

Газотурбинный двигатель с устройством для блокировки вращения сегмента направляющего аппарата в картере и блокировочный штифт, препятствующий вращению

Газотурбинный двигатель включает устройство блокировки вращения сегмента направляющего соплового аппарата, установленного внутри кольцевого картера газотурбинного двигателя, и теплозащитный лист, установленный между внутренней стенкой картера и наружной стенкой сегмента направляющего аппарата....
Тип: Изобретение
Номер охранного документа: 0002558174
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.68ea

Открытый воздушный винт для турбомашины

Изобретение относится к области авиации, в частности к конструкциям турбовинтовых двигателей. Турбомашина содержит, по меньшей мере, один открытый воздушный винт, имеющий лопасти с регулируемым углом установки, замки которых заходят снаружи в радиальное гнездо кольцевого элемента ротора и...
Тип: Изобретение
Номер охранного документа: 0002558411
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a19

Способ определения крутящего момента и/или угловой скорости вращающегося вала и устройство для выполнения способа

Изобретения относятся к измерительной технике и могут быть использованы для измерения крутящего момента и угловой скорости вращающегося вала. Способ содержит этапы генерации первого и второго аналоговых сигналов с помощью датчика, генерирующего сигнал при прохождении перед ним зуба одного или...
Тип: Изобретение
Номер охранного документа: 0002558714
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6bb5

Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя

Группа изобретений относится к измерительной технике, в частности к средствам измерений крутильных колебаний. Способ содержит этапы, на которых получают колебательный сигнал ускорения от акселерометра, расположенного на неподвижной детали турбинного двигателя, оценивают частотный спектр...
Тип: Изобретение
Номер охранного документа: 0002559131
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cf5

Способ изготовления лопатки с внутренними каналами из композитного материала и лопатка турбомашины из композитного материала

Группа изобретений относится к способу изготовления лопатки (10) турбомашины из композитного материала и лопатке турбомашины из композитного материала. Лопатка содержит волокнистую деталь упрочнения, получаемую путем переплетения первого множества волокон и второго множества волокон. Волокна...
Тип: Изобретение
Номер охранного документа: 0002559451
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d65

Устройство для измерения температуры в проточном канале первичного потока двухконтурного турбореактивного двигателя

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в первичном потоке двухвального двухконтурного турбореактивного двигателя. Изобретение предоставляет устройство для измерения температуры на входе компрессора в проточном канале первичного потока...
Тип: Изобретение
Номер охранного документа: 0002559563
Дата охранного документа: 10.08.2015
+ добавить свой РИД