×
13.02.2018
218.016.24d2

Результат интеллектуальной деятельности: СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002642503
Дата охранного документа
25.01.2018
Аннотация: Использование: для определения параметров деталей, изготовленных из композитного материала. Сущность изобретения заключается в том, что определяют характеристики продольной ультразвуковой волны, проходящей по пути внутри детали, при этом измеряют время прохождения продольной ультразвуковой волны, пропускаемой деталью, и измеряют время прохождения прошедшей волны путем наблюдения начала волны. Технический результат: обеспечение возможности быстро и достоверно определять параметры деталей, изготовленных из композитного материала. 4 з.п. ф-лы, 10 ил.

Область техники, к которой относится изобретение

Изобретение находится в области способов характеризации деталей, изготовленных из композитного материала, в машиностроении, в частности в авиационной промышленности.

Уровень техники

Наряду с тем, что заданная деталь разрабатывается, необходимо знать содержание волокна и содержание смолы в заданной зоне детали. Чтобы это сделать, как известно, измеряют скорость распространения и затухания продольной ультразвуковой волны, проходящей через деталь.

Одним способом измерения этих величин является использование ультразвукового преобразователя в приемопередающем режиме. Внимание тогда уделяют зоне детали, которая определяется взаимно параллельными, передней и задней поверхностями. Продольную волну направляют так, чтобы распространялась перпендикулярно двум поверхностям, частично отражаясь и, также, затухая в материале детали. Таким образом, наблюдают первый сигнал (эхо), приходящий от передней поверхности, а также второй сигнал (эхо), приходящий от задней поверхности, и называемый отраженным сигналом. Преобразователь получает отраженную волну, и, тогда, возможно путем наблюдения двух отраженных компонентов проследить и скорость распространения, и затухание волны в материале.

Все-таки, такое решение является непригодным для материалов, которые сильно поглощают ультразвуковые волны. Это применяется, например, к трехмерным 3D тканевым композитам со структурой, которая является негомогенной и анизотропной. Для деталей промышленных толщин не видно никакого отраженного сигнала в записях, сделанных на таких материалах из-за сильного поглощения.

Таким образом, необходимо разработать способ, пригодный для применения к деталям, изготовленным из композитных материалов, и дающий возможность характеризовать большое число деталей независимо от их толщины или их поглотительной сущности.

Раскрытие изобретения

Изобретение относится к способу характеризации детали, изготовленной из композитного материала, причем способ включает в себя этап определения характеристики прохождения продольной ультразвуковой волны по пути внутри детали, и отличается тем, что измеряют время прохождения волны, пропущенной деталью.

С помощью этой технологии преодолевается проблема, связанная с отсутствием отраженного сигнала в измерениях в приемопередаточном режиме.

Согласно преимущественной характеристике, время прохождения пропущенной волны измеряют путем наблюдения начала волны.

С помощью этой характеристики возможно игнорировать значительно усиленные проблемы фазового сдвига и деформации синусоидального сигнала используемой ультразвуковой волны, вызванные толстыми материалами, или вызванные сложной негомогенной, а также анизотропной структурой определенных композитных материалов.

При осуществлении определяют скорость распространения продольной ультразвуковой волны, проходящей в детали.

Это обеспечивает информацию, которая полезна для определения содержания волокон и содержания смолы в композитном материале, информацию, которая может быть использована в разработке исследуемой детали.

В другом осуществлении, которое может быть скомбинировано с предыдущим осуществлением, амплитуду прошедшей волны также измеряют, для того чтобы определять затухание по всей длине или единице длины, которому подвергается продольная ультразвуковая волна при прохождении в детали.

Это обеспечивает информацию, которая является полезной для определения содержания пор, которая может быть использована в разработке исследуемой детали.

Предпочтительно, измеряют время распространения ультразвуковой волны, прошедшей в отсутствие детали, в качестве времен распространения ультразвуковых волн, отраженных соответственно первой лицевой стороной детали и второй лицевой стороной детали, для того чтобы определять размер детали, пропуская продольную ультразвуковую волну, проходящую по пути в детали.

С помощью этой характеристики, которая является оптимальной, лишь преимущественной, точное измерение получает размер детали, через который проходит прошедшая волна, а такой размер является довольно изменчивым в деталях, изготовленных из композитного материала, так, это может быть полезным, чтобы знать точную величину для данной детали, для конкретного пути, сопровождаемого используемой ультразвуковой волной.

В частности, способ осуществляется для детали, изготовленной из 3D тканевого композитного материала.

Такие материалы являются особенно перспективными для характеризации из-за их негомогенности и из-за их анизотропии. С помощью изобретения возможно исследовать их быстро и достоверно, особенно, когда детали находятся в разработке.

Краткое описание чертежей

Фиг. 1 показывает предварительное действие в контексте осуществления способа изобретения.

Фиг. 2 показывает три стадии этапа измерения толщины, осуществляемого в изобретении.

Фиг. 3-5 показывают сигналы, записанные во время трех стадий из Фиг. 2.

Фиг. 6 показывает стадию наблюдения прошедшей волны во время способа изобретения.

Фиг. 7 показывает сигнал, измеренный во время стадии из Фиг. 6.

Фиг. 8-10 показывают сигналы, полученные во время стадий из Фиг. 2-6 для проставки, изготовленной из композитного материала.

Осуществление изобретения

Как показано на Фиг. 1, два плоских ультразвуковых датчика, работающих в режиме передачи, устанавливают в положение на одной прямой. Это приведение в положение на одной прямой составляет предварительную стадию E0. Датчики разделены жидкостью, такой как вода. Преобразователь 10 работает в режиме излучения, а датчик 20 в режиме приема. Сигнал, полученный датчиком 20, проходит через максимум после последовательных юстировок осей Oy и Oz, а также углов θ и ϕ.

На Фиг. 2 представлено измерение толщины материала исследуемой детали, обозначенной 30. Это измерение должно быть с точностью до одного микрометра.

Первая стадия Е1 состоит в измерении времени прохождения волны, прошедшей через воду между двумя преобразователями 10 и 20, в отсутствие детали. Вторая стадия состоит в измерении времени прохождения волны, отраженной первой лицевой поверхностью, обозначенной 31, детали 30, преобразователем 10, работающим как приемопередатчик, обращенным к поверхности 31. Третья стадия состоит в измерении времени прохождения волны, отраженной второй поверхностью, обозначенной 32, детали 30, преобразователем 20, работающим, в свою очередь, как приемопередатчик, и обращенным к поверхности 32.

Время распространения измеряют в каждом случае путем наблюдения начала сигнала, а не дуги сигнала. Это делает возможным для оператора игнорировать любое явление, связанное с возможным фазовым сдвигом сигнала. Конкретно, в присутствии многих отражений появляются фазовые сдвиги. Это также случается, когда после отражения сигнал изменяется по направлению. Форма дуг сигнала модифицируется, и трудно получать точную величину времени распространения. Вот почему предлагается измерять сигнал путем наблюдения исключительно начала сигнала.

Поскольку скорость распространения волны в воде Vwater является известной, то возможно путем вычитания получать толщину детали из стадий El, E2 и E3, путем использования формулы X2=(tХ1+Х2+Х3-tX3-tХl)×Vwater, где Х1 – расстояние между преобразователем 10 и поверхностью 31, Х2 – толщина детали в точке воздействия пучка, а Х3 – расстояние между преобразователем 20 и поверхностью 32, и где tХ1+Х2+Х3, tХl и tX3 являются временами прохождения, измеренными во время стадий Е1, Е2 и Е3 соответственно.

Фиг. 3-5 показывают графики, отображенные во время стадий Е1, Е2 и Е3, соответственно, с водой при 22°C, волной с частотой 5 мегагерц (МГц) (дающей скорость распространения 1486,45 метров в секунду (м/с) в воде), для проставки, имеющей толщину 76,20 миллиметров (мм) и изготовленной из титана TA6V. Время прохождения волны измеряют на основе начала волны, данных соответствующими ссылками 100, 119 и 120.

Получены следующие результаты:

tХ1+Х2+Х3 92,72 микросекунды (мкс)

tX3 = 2,98/2 = 26,49 мкс

tХl = 26,49/2 = 14,97 мкс

Х2 = (tХ1+Х2+Х3-tХ3-tХ1)Vwater

Х2 = (92,72 10-6 – 26,49 10-6 – 14,97 10-6) 1486,54

X2 = 76,20 мм

Толщина, измеренная толщиномером, составляет в действительности 76,20 мм, т.е. 3".

Фиг. 6 показывает стадию Е4, во время которой наблюдается волна, пропущенная деталью 30. Таким образом, преобразователь 10 является работающим в режиме излучения, наряду с тем, что преобразователь 20 является работающим в режиме приема. Падающая волна обозначена 40 на фигуре, волна, распространяющаяся в детали 30, обозначена 41, а прошедшая волна обозначена 42.

Время прохождения волны в детали 30 выражается в виде t'Х2 = t-(tХ1+tХ3). Зная Х2, как определено заранее, скорость распространения волны в материале выражается в виде Vmaterial = Х2/t'Х2.

Фиг. 7 показывает сигнал, наблюдаемый во время стадии Е4 для пространственной проставки толщиной 76,20 мм, изготовленной из титана (TA6V), даже с волной при 5 МГц. Время прохождения волны измеряют на основе начала волны, обозначенного 130.

Полученные величины являются следующими:

t = 53,80 мкс

t'Х2 = (53,80 10-6 – 26,49 10-6 – 14,97 10-6)

t'Х2 = 12,34 мкс

V=76,20 10-3/l2,34 10-6

И, в конце концов, численное значение скорости составляет V = 6175,04 м/с. Эта величина подтверждена с помощью обычного измерения скорости распространения, для того чтобы проверить достоверность результатов способа.

Фиг. 8-10 показывают сканограммы, полученные для стадий Е2, Е3 и Е4 для композитной ступенчатой проставки, имеющей толщину 47,09 мм с излучением преобразователя с 1 МГц. Время прохождения волны измерено на основе начал волн, данных соответствующими ссылками 140, 150 и 160.

Полученные величины являются следующими:

tХ1+Х2+Х3 = 90,22 мкс

t = 74,90 мкс

tX3 = 52,42/2 = 26,41 мкс

tХl = 64,68/2 = 32,34 мкс

Х2 = (tХ1+Х2+Х3-tХ3-tХ1)Vwater

Х2 = (90,22 10-6 – 26,21 10-6 – 32,34 10-6) 1486,54

Х2 = 31,67 10-6 1488,76

X2 = 47,078 мм

t'Х2 = t - (tХ1 + tХ3)

t'X2 = (74,90 10-6 – 26,21 10-6 – 32,34 10-6)

t'Х2 = 16,35 мкс

Vcomposite = X2/t'Х2

Vcomposite = 47,078 10-3/16,35 10-6

И, в конце концов, численное значение скорости составляет Vcomposite = 2879,4 м/с.

Затем внимание уделено затуханию продольной волны в материале.

Выражение для амплитуды волны, прошедшей от излучателя к приемнику, записывается как следующее: Y1 = Amaxe-α1(Х1+Х2+Х3), где Амах представляет максимальную амплитуду на поверхности преобразователя, и α1 представляет собой затухание волны в воде.

Выражение для амплитуды волны, прошедшей от излучателя к приемнику после прохождения через материал, записано как следующее: Y2 = Amaxe-α1(Х1+Х3)e-α2Х2t12t21, где α2 представляет собой затухание волны в материале, t12 является коэффициентом амплитудного пропускания от воды к материалу, а t21 является коэффициентом амплитудного пропускания от материала к воде.

Выражение для продукта t12t21 является функцией акустического импеданса материала Z2 = ρ2V2 и акустического импеданса воды Z1 = ρ1V1. В выражении акустического импеданса ρ представляет плотность и V представляет скорость распространения продольной волны с обсуждаемой частотой.

Амплитудное отношение Y1/Y2 записывается как следующее:

Из которой возможно вывести выражение для затухания в материале:

Первое осуществление относится к проставке из композитного материала, имеющего толщину 47,09 мм, использующему волну с 2,25 МГц.

Численные значения для этого осуществления являются следующими:

ρ2 = 1525, 71 килограмм на кубический метр (кг/м3)

V2 = 2946,75 м/с

Z2 = 4,39316 мегаом на переменном токе (MΩac)

ρwater = 997.77 кг/м3

Vwater = I486,54 м/c

Zwater = 1,48322 MΩac

t12 t21 = 0,75478

Х2 = 47,078 мм (точное ультразвуковое измерение)

Y1 = 643,2 милливольт (мВ)

Y2 = 15,885 мВ

αwater2,25Мгц = 0,972 непера на метр (Нп/м)

α2 = 73,61 Нп/м.

Второе осуществление относится к проставке из композитного материала, имеющей толщину 47,09 мм, использующее волну с 1 МГц.

ρ2 = 1525,71 кг/м3

V2 = 2879,39 м/с

Z2 = 4,39311 MΩac

ρwater = 997,77 кг/м3

Vwater = I486,54 м/c

Zwater = 1,48322 MΩac

t12t21 = 0,75479

Х2 = 47,078 мм (точное ультразвуковое измерение)

Y1 = 370,25 мВ

Y2 = 16,395 мВ

αwater1Мгц = 0,682 Нп/м

α2 = 60,92 Нп/м.

Изобретение не ограничивается описанными реализациями, а распространяется на любой вариант в пределах объема формулы изобретения.


СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 301-310 из 928.
10.04.2015
№216.013.3c65

Деталь, содержащая подложку со слоем керамического покрытия

Изобретение относится к детали, содержащей подложку, выполненную из электропроводящего материала, и покрытие по меньшей мере на части поверхности подложки, содержащее керамический слой, и может быть использовано при высоких температурах, в частности, в области авиации. Указанный слой покрытия...
Тип: Изобретение
Номер охранного документа: 0002546949
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.428d

Изоляция окружного выступающего края внешнего корпуса турбомашины относительно соответствующего кольцевого сектора, ступень турбомашины и турбомашина

Ступень турбины содержит колесо ротора, установленное внутри разделенного на сектора кольца, удерживаемого внешним корпусом. Каждый кольцевой сектор содержит задний край, имеющий кольцевую выемку, ограниченную передним кольцевым упором, задним кольцевым упором и донной стенкой. Внешний корпус...
Тип: Изобретение
Номер охранного документа: 0002548535
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42bb

Устройство неразрушающего контроля детали

Изобретение относится к устройствам контроля вихревыми токами для определения дефектов на поверхности или на малой глубине детали, в частности лопасти вентилятора авиационного двигателя. Устройство содержит зонд (20), в котором размещен датчик (21), при этом зонд установлен с возможностью...
Тип: Изобретение
Номер охранного документа: 0002548581
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4314

Контур обнаружения положений контакторов в турбомашине

Изобретение относится к турбомашинам. Контур (10) обнаружения индивидуальных положений множества электрических контакторов содержит множество модулей (А, В, С), каждый из которых содержит контактор (А', В', С') с k разными контактными положениями, в каждом из которых он последовательно...
Тип: Изобретение
Номер охранного документа: 0002548670
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4872

Способ изготовления композитной металлической детали с внутренними изготовленными из волокон усиливающими элементами, заготовка для его осуществления и полученная металлическая деталь

Изобретение относится к способу изготовления композитных металлических деталей, заготовке для упомянутой детали и композитной детали и может быть применено для создания деталей, прочных как на растяжение, так и на сжатие, например деталей посадочного шасси воздушного судна. Формируют заготовку...
Тип: Изобретение
Номер охранного документа: 0002550053
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4915

Предварительный нагрев свечи зажигания

Способ зажигания газотурбинного двигателя (11) посредством использования свечи (1) зажигания, содержащей первый электрод, второй электрод и полупроводниковый элемент между первым электродом и вторым электродом. Полупроводниковый элемент имеет открытую поверхность. Способ зажигания содержит этап...
Тип: Изобретение
Номер охранного документа: 0002550216
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4923

Турбинная лопатка с обеспыливающим отверстием в основании лопасти

Охлаждаемая турбинная лопатка для турбомашины содержит лопасть, установленную на платформе, которая расположена на ножке. Лопасть является полой с одной или несколькими полостями для циркуляции охлаждающего воздуха. Полость, размещенная вдоль задней кромки, питается охлаждающим воздухом от...
Тип: Изобретение
Номер охранного документа: 0002550230
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49fe

Способ изготовления кованой детали с адаптивной шлифовкой

Изобретение относится к изготовлению деталей типа лопатки турбомашины. Прецизионной ковкой получают заготовочную деталь. После операции ковки измеряют геометрические характеристики заготовочной детали и сравнивают их с теоретической моделью, в которой заданы геометрические характеристики...
Тип: Изобретение
Номер охранного документа: 0002550449
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4cad

Система винтов противоположного вращения для турбомашины летательного аппарата

Система винтов противоположного вращения для турбомашины летательного аппарата содержит свободную силовую турбину, первый и второй винты противоположного вращения и устройство механической трансмиссии. Силовая турбина содержит первый и второй роторы противоположного вращения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002551143
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d1a

Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель

Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель, содержащий ротор, согласно которому: измеряют мгновенный режим ротора (R(t)); фильтруют сигнал режима ротора R(t) для разделения его статической составляющей (Rs(t)) от его...
Тип: Изобретение
Номер охранного документа: 0002551252
Дата охранного документа: 20.05.2015
Показаны записи 301-310 из 668.
20.03.2015
№216.013.3296

Установка для погрузочно-разгрузочных операций, выполняемых с модулем двигателя летательного аппарата

Установка для погрузочно-разгрузочных операций, выполняемых с модулем (1), содержит, в частности, тележку (2), верхнюю арматуру (5), образующую поворотный участок, оборудование (12) поддержки модуля и дополнительные устройства крепления (19) оборудования с поворотной частью (5) таким образом,...
Тип: Изобретение
Номер охранного документа: 0002544425
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3c65

Деталь, содержащая подложку со слоем керамического покрытия

Изобретение относится к детали, содержащей подложку, выполненную из электропроводящего материала, и покрытие по меньшей мере на части поверхности подложки, содержащее керамический слой, и может быть использовано при высоких температурах, в частности, в области авиации. Указанный слой покрытия...
Тип: Изобретение
Номер охранного документа: 0002546949
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.428d

Изоляция окружного выступающего края внешнего корпуса турбомашины относительно соответствующего кольцевого сектора, ступень турбомашины и турбомашина

Ступень турбины содержит колесо ротора, установленное внутри разделенного на сектора кольца, удерживаемого внешним корпусом. Каждый кольцевой сектор содержит задний край, имеющий кольцевую выемку, ограниченную передним кольцевым упором, задним кольцевым упором и донной стенкой. Внешний корпус...
Тип: Изобретение
Номер охранного документа: 0002548535
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42bb

Устройство неразрушающего контроля детали

Изобретение относится к устройствам контроля вихревыми токами для определения дефектов на поверхности или на малой глубине детали, в частности лопасти вентилятора авиационного двигателя. Устройство содержит зонд (20), в котором размещен датчик (21), при этом зонд установлен с возможностью...
Тип: Изобретение
Номер охранного документа: 0002548581
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4314

Контур обнаружения положений контакторов в турбомашине

Изобретение относится к турбомашинам. Контур (10) обнаружения индивидуальных положений множества электрических контакторов содержит множество модулей (А, В, С), каждый из которых содержит контактор (А', В', С') с k разными контактными положениями, в каждом из которых он последовательно...
Тип: Изобретение
Номер охранного документа: 0002548670
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4872

Способ изготовления композитной металлической детали с внутренними изготовленными из волокон усиливающими элементами, заготовка для его осуществления и полученная металлическая деталь

Изобретение относится к способу изготовления композитных металлических деталей, заготовке для упомянутой детали и композитной детали и может быть применено для создания деталей, прочных как на растяжение, так и на сжатие, например деталей посадочного шасси воздушного судна. Формируют заготовку...
Тип: Изобретение
Номер охранного документа: 0002550053
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4915

Предварительный нагрев свечи зажигания

Способ зажигания газотурбинного двигателя (11) посредством использования свечи (1) зажигания, содержащей первый электрод, второй электрод и полупроводниковый элемент между первым электродом и вторым электродом. Полупроводниковый элемент имеет открытую поверхность. Способ зажигания содержит этап...
Тип: Изобретение
Номер охранного документа: 0002550216
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4923

Турбинная лопатка с обеспыливающим отверстием в основании лопасти

Охлаждаемая турбинная лопатка для турбомашины содержит лопасть, установленную на платформе, которая расположена на ножке. Лопасть является полой с одной или несколькими полостями для циркуляции охлаждающего воздуха. Полость, размещенная вдоль задней кромки, питается охлаждающим воздухом от...
Тип: Изобретение
Номер охранного документа: 0002550230
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49fe

Способ изготовления кованой детали с адаптивной шлифовкой

Изобретение относится к изготовлению деталей типа лопатки турбомашины. Прецизионной ковкой получают заготовочную деталь. После операции ковки измеряют геометрические характеристики заготовочной детали и сравнивают их с теоретической моделью, в которой заданы геометрические характеристики...
Тип: Изобретение
Номер охранного документа: 0002550449
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4cad

Система винтов противоположного вращения для турбомашины летательного аппарата

Система винтов противоположного вращения для турбомашины летательного аппарата содержит свободную силовую турбину, первый и второй винты противоположного вращения и устройство механической трансмиссии. Силовая турбина содержит первый и второй роторы противоположного вращения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002551143
Дата охранного документа: 20.05.2015
+ добавить свой РИД