×
13.02.2018
218.016.24d2

Результат интеллектуальной деятельности: СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002642503
Дата охранного документа
25.01.2018
Аннотация: Использование: для определения параметров деталей, изготовленных из композитного материала. Сущность изобретения заключается в том, что определяют характеристики продольной ультразвуковой волны, проходящей по пути внутри детали, при этом измеряют время прохождения продольной ультразвуковой волны, пропускаемой деталью, и измеряют время прохождения прошедшей волны путем наблюдения начала волны. Технический результат: обеспечение возможности быстро и достоверно определять параметры деталей, изготовленных из композитного материала. 4 з.п. ф-лы, 10 ил.

Область техники, к которой относится изобретение

Изобретение находится в области способов характеризации деталей, изготовленных из композитного материала, в машиностроении, в частности в авиационной промышленности.

Уровень техники

Наряду с тем, что заданная деталь разрабатывается, необходимо знать содержание волокна и содержание смолы в заданной зоне детали. Чтобы это сделать, как известно, измеряют скорость распространения и затухания продольной ультразвуковой волны, проходящей через деталь.

Одним способом измерения этих величин является использование ультразвукового преобразователя в приемопередающем режиме. Внимание тогда уделяют зоне детали, которая определяется взаимно параллельными, передней и задней поверхностями. Продольную волну направляют так, чтобы распространялась перпендикулярно двум поверхностям, частично отражаясь и, также, затухая в материале детали. Таким образом, наблюдают первый сигнал (эхо), приходящий от передней поверхности, а также второй сигнал (эхо), приходящий от задней поверхности, и называемый отраженным сигналом. Преобразователь получает отраженную волну, и, тогда, возможно путем наблюдения двух отраженных компонентов проследить и скорость распространения, и затухание волны в материале.

Все-таки, такое решение является непригодным для материалов, которые сильно поглощают ультразвуковые волны. Это применяется, например, к трехмерным 3D тканевым композитам со структурой, которая является негомогенной и анизотропной. Для деталей промышленных толщин не видно никакого отраженного сигнала в записях, сделанных на таких материалах из-за сильного поглощения.

Таким образом, необходимо разработать способ, пригодный для применения к деталям, изготовленным из композитных материалов, и дающий возможность характеризовать большое число деталей независимо от их толщины или их поглотительной сущности.

Раскрытие изобретения

Изобретение относится к способу характеризации детали, изготовленной из композитного материала, причем способ включает в себя этап определения характеристики прохождения продольной ультразвуковой волны по пути внутри детали, и отличается тем, что измеряют время прохождения волны, пропущенной деталью.

С помощью этой технологии преодолевается проблема, связанная с отсутствием отраженного сигнала в измерениях в приемопередаточном режиме.

Согласно преимущественной характеристике, время прохождения пропущенной волны измеряют путем наблюдения начала волны.

С помощью этой характеристики возможно игнорировать значительно усиленные проблемы фазового сдвига и деформации синусоидального сигнала используемой ультразвуковой волны, вызванные толстыми материалами, или вызванные сложной негомогенной, а также анизотропной структурой определенных композитных материалов.

При осуществлении определяют скорость распространения продольной ультразвуковой волны, проходящей в детали.

Это обеспечивает информацию, которая полезна для определения содержания волокон и содержания смолы в композитном материале, информацию, которая может быть использована в разработке исследуемой детали.

В другом осуществлении, которое может быть скомбинировано с предыдущим осуществлением, амплитуду прошедшей волны также измеряют, для того чтобы определять затухание по всей длине или единице длины, которому подвергается продольная ультразвуковая волна при прохождении в детали.

Это обеспечивает информацию, которая является полезной для определения содержания пор, которая может быть использована в разработке исследуемой детали.

Предпочтительно, измеряют время распространения ультразвуковой волны, прошедшей в отсутствие детали, в качестве времен распространения ультразвуковых волн, отраженных соответственно первой лицевой стороной детали и второй лицевой стороной детали, для того чтобы определять размер детали, пропуская продольную ультразвуковую волну, проходящую по пути в детали.

С помощью этой характеристики, которая является оптимальной, лишь преимущественной, точное измерение получает размер детали, через который проходит прошедшая волна, а такой размер является довольно изменчивым в деталях, изготовленных из композитного материала, так, это может быть полезным, чтобы знать точную величину для данной детали, для конкретного пути, сопровождаемого используемой ультразвуковой волной.

В частности, способ осуществляется для детали, изготовленной из 3D тканевого композитного материала.

Такие материалы являются особенно перспективными для характеризации из-за их негомогенности и из-за их анизотропии. С помощью изобретения возможно исследовать их быстро и достоверно, особенно, когда детали находятся в разработке.

Краткое описание чертежей

Фиг. 1 показывает предварительное действие в контексте осуществления способа изобретения.

Фиг. 2 показывает три стадии этапа измерения толщины, осуществляемого в изобретении.

Фиг. 3-5 показывают сигналы, записанные во время трех стадий из Фиг. 2.

Фиг. 6 показывает стадию наблюдения прошедшей волны во время способа изобретения.

Фиг. 7 показывает сигнал, измеренный во время стадии из Фиг. 6.

Фиг. 8-10 показывают сигналы, полученные во время стадий из Фиг. 2-6 для проставки, изготовленной из композитного материала.

Осуществление изобретения

Как показано на Фиг. 1, два плоских ультразвуковых датчика, работающих в режиме передачи, устанавливают в положение на одной прямой. Это приведение в положение на одной прямой составляет предварительную стадию E0. Датчики разделены жидкостью, такой как вода. Преобразователь 10 работает в режиме излучения, а датчик 20 в режиме приема. Сигнал, полученный датчиком 20, проходит через максимум после последовательных юстировок осей Oy и Oz, а также углов θ и ϕ.

На Фиг. 2 представлено измерение толщины материала исследуемой детали, обозначенной 30. Это измерение должно быть с точностью до одного микрометра.

Первая стадия Е1 состоит в измерении времени прохождения волны, прошедшей через воду между двумя преобразователями 10 и 20, в отсутствие детали. Вторая стадия состоит в измерении времени прохождения волны, отраженной первой лицевой поверхностью, обозначенной 31, детали 30, преобразователем 10, работающим как приемопередатчик, обращенным к поверхности 31. Третья стадия состоит в измерении времени прохождения волны, отраженной второй поверхностью, обозначенной 32, детали 30, преобразователем 20, работающим, в свою очередь, как приемопередатчик, и обращенным к поверхности 32.

Время распространения измеряют в каждом случае путем наблюдения начала сигнала, а не дуги сигнала. Это делает возможным для оператора игнорировать любое явление, связанное с возможным фазовым сдвигом сигнала. Конкретно, в присутствии многих отражений появляются фазовые сдвиги. Это также случается, когда после отражения сигнал изменяется по направлению. Форма дуг сигнала модифицируется, и трудно получать точную величину времени распространения. Вот почему предлагается измерять сигнал путем наблюдения исключительно начала сигнала.

Поскольку скорость распространения волны в воде Vwater является известной, то возможно путем вычитания получать толщину детали из стадий El, E2 и E3, путем использования формулы X2=(tХ1+Х2+Х3-tX3-tХl)×Vwater, где Х1 – расстояние между преобразователем 10 и поверхностью 31, Х2 – толщина детали в точке воздействия пучка, а Х3 – расстояние между преобразователем 20 и поверхностью 32, и где tХ1+Х2+Х3, tХl и tX3 являются временами прохождения, измеренными во время стадий Е1, Е2 и Е3 соответственно.

Фиг. 3-5 показывают графики, отображенные во время стадий Е1, Е2 и Е3, соответственно, с водой при 22°C, волной с частотой 5 мегагерц (МГц) (дающей скорость распространения 1486,45 метров в секунду (м/с) в воде), для проставки, имеющей толщину 76,20 миллиметров (мм) и изготовленной из титана TA6V. Время прохождения волны измеряют на основе начала волны, данных соответствующими ссылками 100, 119 и 120.

Получены следующие результаты:

tХ1+Х2+Х3 92,72 микросекунды (мкс)

tX3 = 2,98/2 = 26,49 мкс

tХl = 26,49/2 = 14,97 мкс

Х2 = (tХ1+Х2+Х3-tХ3-tХ1)Vwater

Х2 = (92,72 10-6 – 26,49 10-6 – 14,97 10-6) 1486,54

X2 = 76,20 мм

Толщина, измеренная толщиномером, составляет в действительности 76,20 мм, т.е. 3".

Фиг. 6 показывает стадию Е4, во время которой наблюдается волна, пропущенная деталью 30. Таким образом, преобразователь 10 является работающим в режиме излучения, наряду с тем, что преобразователь 20 является работающим в режиме приема. Падающая волна обозначена 40 на фигуре, волна, распространяющаяся в детали 30, обозначена 41, а прошедшая волна обозначена 42.

Время прохождения волны в детали 30 выражается в виде t'Х2 = t-(tХ1+tХ3). Зная Х2, как определено заранее, скорость распространения волны в материале выражается в виде Vmaterial = Х2/t'Х2.

Фиг. 7 показывает сигнал, наблюдаемый во время стадии Е4 для пространственной проставки толщиной 76,20 мм, изготовленной из титана (TA6V), даже с волной при 5 МГц. Время прохождения волны измеряют на основе начала волны, обозначенного 130.

Полученные величины являются следующими:

t = 53,80 мкс

t'Х2 = (53,80 10-6 – 26,49 10-6 – 14,97 10-6)

t'Х2 = 12,34 мкс

V=76,20 10-3/l2,34 10-6

И, в конце концов, численное значение скорости составляет V = 6175,04 м/с. Эта величина подтверждена с помощью обычного измерения скорости распространения, для того чтобы проверить достоверность результатов способа.

Фиг. 8-10 показывают сканограммы, полученные для стадий Е2, Е3 и Е4 для композитной ступенчатой проставки, имеющей толщину 47,09 мм с излучением преобразователя с 1 МГц. Время прохождения волны измерено на основе начал волн, данных соответствующими ссылками 140, 150 и 160.

Полученные величины являются следующими:

tХ1+Х2+Х3 = 90,22 мкс

t = 74,90 мкс

tX3 = 52,42/2 = 26,41 мкс

tХl = 64,68/2 = 32,34 мкс

Х2 = (tХ1+Х2+Х3-tХ3-tХ1)Vwater

Х2 = (90,22 10-6 – 26,21 10-6 – 32,34 10-6) 1486,54

Х2 = 31,67 10-6 1488,76

X2 = 47,078 мм

t'Х2 = t - (tХ1 + tХ3)

t'X2 = (74,90 10-6 – 26,21 10-6 – 32,34 10-6)

t'Х2 = 16,35 мкс

Vcomposite = X2/t'Х2

Vcomposite = 47,078 10-3/16,35 10-6

И, в конце концов, численное значение скорости составляет Vcomposite = 2879,4 м/с.

Затем внимание уделено затуханию продольной волны в материале.

Выражение для амплитуды волны, прошедшей от излучателя к приемнику, записывается как следующее: Y1 = Amaxe-α1(Х1+Х2+Х3), где Амах представляет максимальную амплитуду на поверхности преобразователя, и α1 представляет собой затухание волны в воде.

Выражение для амплитуды волны, прошедшей от излучателя к приемнику после прохождения через материал, записано как следующее: Y2 = Amaxe-α1(Х1+Х3)e-α2Х2t12t21, где α2 представляет собой затухание волны в материале, t12 является коэффициентом амплитудного пропускания от воды к материалу, а t21 является коэффициентом амплитудного пропускания от материала к воде.

Выражение для продукта t12t21 является функцией акустического импеданса материала Z2 = ρ2V2 и акустического импеданса воды Z1 = ρ1V1. В выражении акустического импеданса ρ представляет плотность и V представляет скорость распространения продольной волны с обсуждаемой частотой.

Амплитудное отношение Y1/Y2 записывается как следующее:

Из которой возможно вывести выражение для затухания в материале:

Первое осуществление относится к проставке из композитного материала, имеющего толщину 47,09 мм, использующему волну с 2,25 МГц.

Численные значения для этого осуществления являются следующими:

ρ2 = 1525, 71 килограмм на кубический метр (кг/м3)

V2 = 2946,75 м/с

Z2 = 4,39316 мегаом на переменном токе (MΩac)

ρwater = 997.77 кг/м3

Vwater = I486,54 м/c

Zwater = 1,48322 MΩac

t12 t21 = 0,75478

Х2 = 47,078 мм (точное ультразвуковое измерение)

Y1 = 643,2 милливольт (мВ)

Y2 = 15,885 мВ

αwater2,25Мгц = 0,972 непера на метр (Нп/м)

α2 = 73,61 Нп/м.

Второе осуществление относится к проставке из композитного материала, имеющей толщину 47,09 мм, использующее волну с 1 МГц.

ρ2 = 1525,71 кг/м3

V2 = 2879,39 м/с

Z2 = 4,39311 MΩac

ρwater = 997,77 кг/м3

Vwater = I486,54 м/c

Zwater = 1,48322 MΩac

t12t21 = 0,75479

Х2 = 47,078 мм (точное ультразвуковое измерение)

Y1 = 370,25 мВ

Y2 = 16,395 мВ

αwater1Мгц = 0,682 Нп/м

α2 = 60,92 Нп/м.

Изобретение не ограничивается описанными реализациями, а распространяется на любой вариант в пределах объема формулы изобретения.


СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
СПОСОБ ХАРАКТЕРИЗАЦИИ ДЕТАЛИ, ИЗГОТОВЛЕННОЙ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 251-260 из 928.
27.09.2014
№216.012.f70f

Система хранения криогенной жидкости для космического аппарата

Изобретение относится к системе хранения криогенной жидкости, в частности, для двигательной установки космического аппарата. Система содержит по меньшей мере один резервуар (1А) для жидкости и внешнюю оболочку (1В), отделенную от резервуара (1А) вакуумным пространством. В этом пространстве...
Тип: Изобретение
Номер охранного документа: 0002529084
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f7df

Неразрушающий контроль уплотняющего элемента

Изобретение относится к устройству для контроля кольцевого уплотнителя, проходящего по поверхности барабана облопаченных дисков ротора. Устройство содержит каретку, имеющую по меньшей мере два направляющих колеса и несущую датчик, в рабочем положении обращенный к кромке проверяемого уплотнителя...
Тип: Изобретение
Номер охранного документа: 0002529292
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9b5

Система управления устройствами с изменяемой геометрией в турбомашинах и турбомашина, содержащая такую систему

Система управления двумя устройствами с изменяемой геометрией в турбомашине содержит приводной механизм, воздействующий на оба устройства с изменяемой геометрией. Одно из устройств с изменяемой геометрией является лопаточным устройством, содержащим ступень лопаток статора с переменным углом...
Тип: Изобретение
Номер охранного документа: 0002529762
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9b9

Вращающийся входной обтекатель для турбомашины, содержащий эксцентрично расположенную концевую часть

Вращающийся входной обтекатель турбомашины для летательного аппарата имеет ось вращения. Обтекатель содержит передний конус, определяющий переднюю концевую часть входного обтекателя. Указанная передняя концевая часть расположена эксцентрично относительно указанной оси вращения входного...
Тип: Изобретение
Номер охранного документа: 0002529766
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fd49

Способ тестирования системы для защиты турбомашины от заброса оборотов при запуске

Изобретение предназначено для тестирования системы защиты от заброса оборотов и включает в себя: а) по получении команды на запуск турбомашины электронная система регулирования посылает команду на цепь управления элементом отсечки топлива на закрытие элемента отсечки топлива или на удержание...
Тип: Изобретение
Номер охранного документа: 0002530687
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe49

Корпус турбомашины с усиленным уплотнением

Корпус турбомашины включает тело, усиленное снаружи осевыми ребрами, равномерно разнесенными по окружности и проходящими в виде полуарок между двумя кольцевыми частями разных диаметров. Кольцевая часть большего диаметра снабжена кольцевым соединительным фланцем. Осевые ребра соединены своими...
Тип: Изобретение
Номер охранного документа: 0002530953
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe81

Ракетный двигатель с раздвижным диффузором

Изобретение относится к ракетной технике. Ракетный двигатель с раздвижным диффузором содержит сопло истечения газов, исходящих из камеры сгорания, причем сопло имеет продольную ось (ZZ') и содержит первую часть, определяющую критическое сечение сопла и первую неподвижную секцию (12) диффузора,...
Тип: Изобретение
Номер охранного документа: 0002531009
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feaf

Устройство для измерения кручения вращающегося вала

Устройство содержит генератор (27) лазерного луча, первый поляризующий фильтр (29) и второй поляризующий фильтр (31), закрепленные на валу и расположенные на расстоянии друг от друга, и приемник (33) лазерного излучения. Лазерный луч, излучаемый генератором, проходит через оба фильтра к...
Тип: Изобретение
Номер охранного документа: 0002531055
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed0

Система для изменения угла атаки лопаток рабочего колеса газотурбинного двигателя летательного аппарата, используя бесщеточный электродвигатель

Система изменения угла атаки лопаток рабочего колеса, смонтированных на втулке, вращающейся вдоль оси рабочего колеса, содержит бесщеточный электродвигатель и механические соединительные средства. Электродвигатель включает статор, оснащенный катушками, предназначенный для надежного монтажа на...
Тип: Изобретение
Номер охранного документа: 0002531088
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff51

Способ изготовления детали из суперсплава на основе никеля и деталь, полученная указанным способом

Изобретение относится к области металлургии, в частности к получению жаропрочных сплавов на основе никеля, обладающих высоким сопротивлением ползучести и растяжению. Способ изготовления заготовки детали из суперсплава на основе Ni, содержащего, по меньшей мере, 50 мас.% Ni и в сумме, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002531217
Дата охранного документа: 20.10.2014
Показаны записи 251-260 из 668.
20.09.2014
№216.012.f62f

Стенд и способ контроля посредством магнитной дефектоскопии вала газотурбинного двигателя

Настоящая группа изобретений касается стенда и способа контроля посредством магнитной дефектоскопии трубчатой детали, такой как вал газотурбинного двигателя. Стенд (10) для контроля посредством магнитной дефектоскопии трубчатой детали (12), такой как вал газотурбинного двигателя, содержит...
Тип: Изобретение
Номер охранного документа: 0002528856
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f70f

Система хранения криогенной жидкости для космического аппарата

Изобретение относится к системе хранения криогенной жидкости, в частности, для двигательной установки космического аппарата. Система содержит по меньшей мере один резервуар (1А) для жидкости и внешнюю оболочку (1В), отделенную от резервуара (1А) вакуумным пространством. В этом пространстве...
Тип: Изобретение
Номер охранного документа: 0002529084
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f7df

Неразрушающий контроль уплотняющего элемента

Изобретение относится к устройству для контроля кольцевого уплотнителя, проходящего по поверхности барабана облопаченных дисков ротора. Устройство содержит каретку, имеющую по меньшей мере два направляющих колеса и несущую датчик, в рабочем положении обращенный к кромке проверяемого уплотнителя...
Тип: Изобретение
Номер охранного документа: 0002529292
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9b5

Система управления устройствами с изменяемой геометрией в турбомашинах и турбомашина, содержащая такую систему

Система управления двумя устройствами с изменяемой геометрией в турбомашине содержит приводной механизм, воздействующий на оба устройства с изменяемой геометрией. Одно из устройств с изменяемой геометрией является лопаточным устройством, содержащим ступень лопаток статора с переменным углом...
Тип: Изобретение
Номер охранного документа: 0002529762
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9b9

Вращающийся входной обтекатель для турбомашины, содержащий эксцентрично расположенную концевую часть

Вращающийся входной обтекатель турбомашины для летательного аппарата имеет ось вращения. Обтекатель содержит передний конус, определяющий переднюю концевую часть входного обтекателя. Указанная передняя концевая часть расположена эксцентрично относительно указанной оси вращения входного...
Тип: Изобретение
Номер охранного документа: 0002529766
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fd49

Способ тестирования системы для защиты турбомашины от заброса оборотов при запуске

Изобретение предназначено для тестирования системы защиты от заброса оборотов и включает в себя: а) по получении команды на запуск турбомашины электронная система регулирования посылает команду на цепь управления элементом отсечки топлива на закрытие элемента отсечки топлива или на удержание...
Тип: Изобретение
Номер охранного документа: 0002530687
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe49

Корпус турбомашины с усиленным уплотнением

Корпус турбомашины включает тело, усиленное снаружи осевыми ребрами, равномерно разнесенными по окружности и проходящими в виде полуарок между двумя кольцевыми частями разных диаметров. Кольцевая часть большего диаметра снабжена кольцевым соединительным фланцем. Осевые ребра соединены своими...
Тип: Изобретение
Номер охранного документа: 0002530953
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe81

Ракетный двигатель с раздвижным диффузором

Изобретение относится к ракетной технике. Ракетный двигатель с раздвижным диффузором содержит сопло истечения газов, исходящих из камеры сгорания, причем сопло имеет продольную ось (ZZ') и содержит первую часть, определяющую критическое сечение сопла и первую неподвижную секцию (12) диффузора,...
Тип: Изобретение
Номер охранного документа: 0002531009
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feaf

Устройство для измерения кручения вращающегося вала

Устройство содержит генератор (27) лазерного луча, первый поляризующий фильтр (29) и второй поляризующий фильтр (31), закрепленные на валу и расположенные на расстоянии друг от друга, и приемник (33) лазерного излучения. Лазерный луч, излучаемый генератором, проходит через оба фильтра к...
Тип: Изобретение
Номер охранного документа: 0002531055
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed0

Система для изменения угла атаки лопаток рабочего колеса газотурбинного двигателя летательного аппарата, используя бесщеточный электродвигатель

Система изменения угла атаки лопаток рабочего колеса, смонтированных на втулке, вращающейся вдоль оси рабочего колеса, содержит бесщеточный электродвигатель и механические соединительные средства. Электродвигатель включает статор, оснащенный катушками, предназначенный для надежного монтажа на...
Тип: Изобретение
Номер охранного документа: 0002531088
Дата охранного документа: 20.10.2014
+ добавить свой РИД