×
13.02.2018
218.016.233c

Результат интеллектуальной деятельности: Способ селективного анализа на основе иммунологических реакций с использованием биочипов

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности к средствам исследования и диагностики с помощью биочипов. Способ селективного анализа на основе иммунологических реакций с использованием биочипов включает подготовку пробы, смешение антигенов пробы с суперпарамагнитными частицами, соединенными с антителами к указанным антигенам пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем. При этом воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода, причем используют изменяющееся во времени и в пространстве неоднородное магнитное поле. После прохождения по капиллярам смесь последовательно перемещают магнитным полем через все зоны селективного детектирования по имуннологическим реакциям. Изобретение обеспечивает повышение чувствительности. 1 ил.

Изобретение относится к медицине, частности к средствам исследования и диагностики с помощью биочипов.

Биологические микрочипы широко используются в диагностике. В основе механизма действия биочипов лежит молекулярное распознавание анализируемых молекул молекулами биополимерами, нанесенными на чип. Это распознавание построено либо на взаимодействии рецепторов с лигандами (например, антител с антигенами), либо на гибридизации комплементарных цепей ДНК. В частности, разработаны биочипы, распознающие короткие олигонуклеотидные последовательности и позволяющие детектировать единичные мутации в генах. Известен способ исследования нуклеиновых кислот и белков с использованием биочипов (DE 10314746). Способ предусматривает подготовку биологической пробы и добавление в нее магнитных частиц с антителами, селективно связывающихся с возбудителями инфекций. В результате перемешивания смеси антитела селективно соединяются с возбудителями инфекций.

После окончания перемешивания смесь перемещают в зону селекции, представляющую собой подложку, на различных частях поверхности которой размещены различные группы антител (моно- или поликлональных) селективно связывающихся с возбудителями инфекций. Измеряя в микроскоп сравнительно (относительно возбудителей инфекций) крупные магнитные частицы через антитела и антигены, связанные с подложкой, определяют тип возбудителей инфекций.

Недостатком известного способа является низкая чувствительность из-за высокого уровня помех, создаваемых антигенами, несвязавшимися при перемешивании с соответствующими антителами соединенными с магнитными частицами.

Известен способ проведения анализов с помощью биочипа (KR 20130093323).

Способ предусматривает подготовку пробы и добавление в нее магнитных наночастиц. Полученная смесь помещается в зону селекции, например на подложку, под которой размещают постоянный магнит. В результате частицы аналита с со-соединенными с ними магнитными частицами фиксируются на подложке, подложка высушивается, а ее содержимое исследуется. Распределение анализируемых частиц на подложке зависит от целого ряда факторов. Это и вещество, форма и размеры наночастиц, параметры магнитного поля и т.д, что увеличивает вероятность ошибки при распознавании типа возбудителей инфекции.

Наиболее близким к заявляемому является известный способ анализа заболеваний или патогенных микроорганизмов с применением биочипа и с использованием существующих методов хемилюминесцентного биотестирования, используемых в крупных клинических лабораторных системах (US 2005221281).

Способ предусматривает подготовку пробы, смешение пробы с суперпарамагнитными частицами, соединенными антителами с биоматериалом пробы, транспортировку смеси в зону селекции через капилляры. При этом, чтобы обеспечить транспорт смеси через капилляр, используют средства создания давления на жидкость (шприц, вантуз, микроактюатор и т.д.). После прохождения капилляров и попадания зону селекции на смесь воздействуют магнитным полем, в результате чего комплексы из суперпарамагнитных частиц, соединенных антителами с биоматериалом пробы, «прилипают» к поверхности кюветы. После прохождения пробы поверхность кюветы промывается для удаления непрореагировавших остатков и выделенные частицы подвергаются анализу.

Недостатками данного способа являются большой уровень помех, создаваемых антигенами, несоединившимися через антитела с магнитными частицами в зоне пробоподготовки. Данные частицы захватываются антителами, фиксированными на подложке в зоне селективного детектирования, и блокируют в данном месте захват антител с магнитными частицами, которые детектируются в микроскопе. В результате размер зоны детектирования уменьшается, что приводит к уменьшению чувствительности детектирования данным способом.

Заявляемый способ направлен на повышение чувствительности детектирования.

Указанный результат достигается тем, что способ селективного анализа на основе иммунологических реакций с использованием биочипов включает подготовку пробы, смешение суперпарамагнитных частиц, соединенных антителами с антигенами пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем. При этом воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода и используя изменяющееся во времени и в пространстве неоднородное магнитное поле.

Отличительными признаками заявляемого способа являются:

- воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода;

- используют изменяющееся во времени и в пространстве неоднородное магнитное поле, перемещаемое вдоль капилляров по направлению от входа в них смеси до выхода.

После перемешивания в зоне пробоподготовки часть антигенов пробы может быть не соединена через антитела с суперпарамагнитными частицами. На данные комплексы магнитное поле не действует, и большая их часть останавливается в мертвой пристеночной зоне капилляров, не достигая зоны селективного детектирования по имуннологическим реакциям. На другую часть, с суперпарамагнитными частицами, действует внешнее магнитное поле, перемещающее суперпарамагнитные частицы, соединенные через антитела с антигенами пробы. В результате действия данной фильтрации в зоне селективного детектирования по имуннологическим реакциям уменьшается количество антигенов пробы без суперпарамагнитных частиц, уменьшающих чувствительность данного способа детектирования.

Повышение чувствительности обеспечивается наличием «микрофлюидного эффекта» - формирования мертвой зоны на стенках капилляров. Эффект заключается в следующем.

Все материалы из зоны пробоподготовки перемещаются по капиллярам в зону диагностики. Перемещение осуществляется под воздействием диффузии, градиента давления, межатомного взаимодействия. Движение внутри капилляра характеризуется возникновением пристеночной мертвой зоны, в которой частицы практически не перемещаются, поскольку силы взаимодействия с неподвижными атомами стенки препятствуют перемещению частиц.

Однако воздействие магнитного поля на суперпарамагнитные частицы создает силы, превосходящие силы взаимодействия, препятствующие перемещению частиц вдоль капилляра. В результате перемещающееся вдоль капилляра магнитное поле будет «тянуть» за собой суперпарамагнитную частицу и соединенные с ней антигены пробы и антитела. Скорость перемещения суперпарамагнитных частиц в результате многократно превышает скорости перемещения непрореагировавших частиц. В результате концентрация суперпарамагнитных частиц на выходе из капилляра становится многократно большей, что уменьшает вероятность ошибки при диагностировании.

Таким образом осуществляется фильтрация (отсев, селекция) непрореагировавших частиц, перемещаемых к зоне селективной детектирования по имуннологическим реакциям.

Воздействие неоднородным магнитным полем осуществляют во все время прохождения смеси по капиллярам, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода.

В каждой из областей селективного детектирования по имуннологическим реакциям находятся антитела только определенного типа. Для дальнейшего повышения чувствительности смесь после прохождения по капиллярам последовательно перемещают магнитным полем через все зоны селективного детектирования по имуннологическим реакциям. Таким образом уменьшаются потери антигенов пробы по сравнению с традиционным методом анализа, при котором анализируемые антигены пробы равномерно распределялись по всем областям селективного детектирования.

Сущность заявленного способа поясняется примером реализации и фиг.1, на которой схематично показано течение пробы от зоны подготовки к зоне селекции по капилляру (микроканалу). На фиг.1 цифрами обозначены: 1 - капилляр; 2 - мертвая зона для микрофлюидного потока; 3 - отдельная суперпарамагнитная частица; 4 - антитело; 5 - антиген пробы; 6 - комплекс, состоящий из антигена пробы, антитела и суперпарамагнитной частицы; 7 - направление вектора силы, воздействующего на суперпарамагнитную частицу в результате воздействия поля.

Способ реализуется следующим образом.

Биочип состоит из 3-х зон:

- пробоподготовки,

- селекции по суперпарамагнитным частицам (обеспечивается пропуск только их и соединенных с ними антигенами пробы и антителами дальше),

- селекции по имуннологическим реакциям и оптического детектирования.

В зону пробоподготовки вводят:

- антитела, соединенные посредством стрептавидина с суперпарамагнитными частицами;

- антигены пробы.

Ввод данных биологических материалов осуществляют шприцем.

В зоне пробоподготовки осуществляют перемешивание антигенов пробы и соединение их с антителами (предварительно соединенными с суперпарамагнитными частицами). Перемешивание осуществляют перемещающимся внешним магнитным полем.

В зоне селекции по суперпарамагнитным частицам осуществляется перемещение комплексов 6 «суперпарамагнитная частица + антиген пробы + с антитело». Перемещение этих комплексов с суперпарамагнитными частицами осуществляют транспортировкой по капиллярам при воздействии на поток внешним перемещающимся магнитным полем. Остальные частицы вследствие микрофлюидного эффекта задерживаются в «мертвом» пристеночном слое.

Из данной зоны селекции выходят в основном только суперпарамагнитные частицы, соединенные с антигенами пробы.

В зоне селекции и детектирования проходят имуннологические селективные реакции соединения антигенов пробы и антител. Для этого осуществляют последовательное перемещение суперпарамагнитных частиц (связанных с антителами и антигенами пробы) внешним магнитным полем через различные секции с антителами. При перемещении через секции производятся селективные имуннологические реакции и их соединение с антителами, закрепленными на подложке. В результате данных реакций закрепленными на подложке становятся и суперпарамагнитные частицы. Размеры суперпарамагнитных частиц и их оптический контраст многократно превышают по данным характеристикам бактерии и вирусы. Измеряя оптическим способом наличие закрепленных на подложке суперпарамагнитных частиц и их концентрацию, определяют количественные и качественные результаты имуннологических реакций.

В современных биочипах антигены пробы распределяют равномерно по зонам детектирования. При этом доля антигенов пробы в ячейке с соответствующими антителами уменьшается в количество секций раз. С целью повышения чувствительности антигены пробы, соединенные с суперпарамагнитными частицами, перемещают последовательно от одной детектирующей секции к другой и т.д. Поэтому при перемещении антигенов пробы через соответствующую зону концентрация антигенов пробы, перемещенных в соответствующую зону, не уменьшается.

Способ селективного анализа на основе иммунологических реакций с использованием биочипов, включающий подготовку пробы, смешение антигенов пробы с суперпарамагнитными частицами, соединенными с антителами к указанным антигенам пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем, отличающийся тем, что воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода, при этом используют изменяющееся во времени и в пространстве неоднородное магнитное поле, причем после прохождения по капиллярам смесь последовательно перемещают магнитным полем через все зоны селективного детектирования по имуннологическим реакциям.
Способ селективного анализа на основе иммунологических реакций с использованием биочипов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
20.10.2015
№216.013.83b9

Оптическое согласующее устройство

Изобретение может использоваться как для изготовления энергосберегающих ламп, так и светосильных светодиодных излучателей. Оптическое согласующее устройство состоит из оптического согласующего элемента, излучающего полупроводникового светодиода и расположенным между ними промежуточного слоя,...
Тип: Изобретение
Номер охранного документа: 0002565324
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9155

Способ оптической маркировки изделия

Изобретение относится к способам оптической маркировки изделий с последующей идентификацией марки с целью защиты от подделки и может быть использовано для защиты от копирования банковских документов, пластиковых карт и идентификационных удостоверений и в компьютерной технике с целью...
Тип: Изобретение
Номер охранного документа: 0002568821
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9f1b

Идентификационная марка

Изобретение относится к способам оптической маркировки изделий с последующей идентификацией марки с целью защиты от подделки и может быть использовано для защиты от копирования банковских документов, в частности, пластиковых карт и идентификационных удостоверений, в компьютерной технике - для...
Тип: Изобретение
Номер охранного документа: 0002572368
Дата охранного документа: 10.01.2016
26.08.2017
№217.015.e2fa

Устройство для прецизионных перемещений

Изобретение относится к области точного приборостроения и может быть использовано в качестве эталона для определения перемещений и линейных размеров объектов в нанометровом диапазоне, а также для калибровки конфокальных микроскопов и оптических интерферометров. Устройство для прецизионных...
Тип: Изобретение
Номер охранного документа: 0002626024
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e437

Эталон для калибровки оптических приборов

Использование: для определения перемещений и линейных размеров объектов в нанометровом диапазоне и для калибровки конфокальных микроскопов и оптических интерферометров. Сущность изобретения заключается в том, что эталон для калибровки оптических приборов содержит размещенный на основании...
Тип: Изобретение
Номер охранного документа: 0002626194
Дата охранного документа: 24.07.2017
29.12.2017
№217.015.f13a

Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов

Изобретение относится к области электротехники, а именно к активации углеродного материала из вискозных волокон для изготовления электродов электролитических суперконденсаторов. Сущность изобретения заключается в том, что способ содержит две стадии, на первой из которых осуществляют пропитку...
Тип: Изобретение
Номер охранного документа: 0002638935
Дата охранного документа: 19.12.2017
20.01.2018
№218.016.110c

Гидрофобный фильтр для сбора нефтепродуктов с поверхности воды и способ его получения

Изобретение относится к области очистки воды от загрязнения углеводородами нефти, маслами. Гидрофобный фильтр для сбора нефтепродуктов с поверхности воды, состоящий из кассеты, в которой размещены отдельные, соединенные между собой высокопористые гидрофобные блоки, выполненные из...
Тип: Изобретение
Номер охранного документа: 0002633891
Дата охранного документа: 19.10.2017
17.02.2018
№218.016.2cec

Способ исследования микрообъектов и ближнепольный оптический микроскоп для его реализации

Изобретение относится к области сканирующей зондовой микроскопии и может быть использовано при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений. Технический результат - повышение пространственной разрешающей...
Тип: Изобретение
Номер охранного документа: 0002643677
Дата охранного документа: 05.02.2018
09.08.2018
№218.016.7860

Зонд ближнепольного микроскопа

Изобретение относится к области сканирующей зондовой микроскопии и может быть использовано при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений и т.д. Зонд ближнепольного микроскопа выполнен в виде отрезка...
Тип: Изобретение
Номер охранного документа: 0002663266
Дата охранного документа: 03.08.2018
08.12.2019
№219.017.ea7d

Устройство для лечения раневой инфекции и дерматологических заболеваний

Изобретение относится к медицинской технике, а именно для лечения и профилактики кожных заболеваний, раневых и ожоговых поверхностей с высокой бактериальной обсемененностью. Устройство содержит облучатель с импульсной ксеноновой лампой в отражателе и блок питания и управления с генератором...
Тип: Изобретение
Номер охранного документа: 0002708198
Дата охранного документа: 04.12.2019
Показаны записи 1-10 из 12.
20.10.2015
№216.013.83b9

Оптическое согласующее устройство

Изобретение может использоваться как для изготовления энергосберегающих ламп, так и светосильных светодиодных излучателей. Оптическое согласующее устройство состоит из оптического согласующего элемента, излучающего полупроводникового светодиода и расположенным между ними промежуточного слоя,...
Тип: Изобретение
Номер охранного документа: 0002565324
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9155

Способ оптической маркировки изделия

Изобретение относится к способам оптической маркировки изделий с последующей идентификацией марки с целью защиты от подделки и может быть использовано для защиты от копирования банковских документов, пластиковых карт и идентификационных удостоверений и в компьютерной технике с целью...
Тип: Изобретение
Номер охранного документа: 0002568821
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9f1b

Идентификационная марка

Изобретение относится к способам оптической маркировки изделий с последующей идентификацией марки с целью защиты от подделки и может быть использовано для защиты от копирования банковских документов, в частности, пластиковых карт и идентификационных удостоверений, в компьютерной технике - для...
Тип: Изобретение
Номер охранного документа: 0002572368
Дата охранного документа: 10.01.2016
26.08.2017
№217.015.e2fa

Устройство для прецизионных перемещений

Изобретение относится к области точного приборостроения и может быть использовано в качестве эталона для определения перемещений и линейных размеров объектов в нанометровом диапазоне, а также для калибровки конфокальных микроскопов и оптических интерферометров. Устройство для прецизионных...
Тип: Изобретение
Номер охранного документа: 0002626024
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e437

Эталон для калибровки оптических приборов

Использование: для определения перемещений и линейных размеров объектов в нанометровом диапазоне и для калибровки конфокальных микроскопов и оптических интерферометров. Сущность изобретения заключается в том, что эталон для калибровки оптических приборов содержит размещенный на основании...
Тип: Изобретение
Номер охранного документа: 0002626194
Дата охранного документа: 24.07.2017
29.12.2017
№217.015.f13a

Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов

Изобретение относится к области электротехники, а именно к активации углеродного материала из вискозных волокон для изготовления электродов электролитических суперконденсаторов. Сущность изобретения заключается в том, что способ содержит две стадии, на первой из которых осуществляют пропитку...
Тип: Изобретение
Номер охранного документа: 0002638935
Дата охранного документа: 19.12.2017
20.01.2018
№218.016.110c

Гидрофобный фильтр для сбора нефтепродуктов с поверхности воды и способ его получения

Изобретение относится к области очистки воды от загрязнения углеводородами нефти, маслами. Гидрофобный фильтр для сбора нефтепродуктов с поверхности воды, состоящий из кассеты, в которой размещены отдельные, соединенные между собой высокопористые гидрофобные блоки, выполненные из...
Тип: Изобретение
Номер охранного документа: 0002633891
Дата охранного документа: 19.10.2017
17.02.2018
№218.016.2cec

Способ исследования микрообъектов и ближнепольный оптический микроскоп для его реализации

Изобретение относится к области сканирующей зондовой микроскопии и может быть использовано при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений. Технический результат - повышение пространственной разрешающей...
Тип: Изобретение
Номер охранного документа: 0002643677
Дата охранного документа: 05.02.2018
09.08.2018
№218.016.7860

Зонд ближнепольного микроскопа

Изобретение относится к области сканирующей зондовой микроскопии и может быть использовано при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений и т.д. Зонд ближнепольного микроскопа выполнен в виде отрезка...
Тип: Изобретение
Номер охранного документа: 0002663266
Дата охранного документа: 03.08.2018
01.03.2019
№219.016.c9b9

Устройство для очистки внутренних поверхностей трубопроводов и емкостей сложной конфигурации, преимущественно боеприпасов

Изобретение относится к различным областям промышленности, а именно к инструментам, используемым для разрушения различных типов материалов высокоскоростными жидкостными кавитирующими струями, и может быть применено для удаления этих материалов из внутренних объемов емкостей сложной...
Тип: Изобретение
Номер охранного документа: 0002296292
Дата охранного документа: 27.03.2007
+ добавить свой РИД