×
13.02.2018
218.016.21c3

Результат интеллектуальной деятельности: Слоистый гибридный композиционный материал и изделие, выполненное из него

Вид РИД

Изобретение

Аннотация: Изобретение относится к слоистым гибридным композиционным материалам для применения в элементах планера, прежде всего в конструкции обшивки крыла самолета, и другой транспортной технике. Композиционный материал содержит внешние и внутренние слои из Al-Li сплавов и слои стеклопластиков на базе клеевых препрегов с армирующим наполнителем. В качестве наружных слоев применяются Al-Li листы толщиной 1-2 мм. В качестве внутренних слоев используются Al-Li листы толщиной 0,3-0,5 мм в количестве не менее трех. Слои стеклопластика, расположенные под внешними Al-Li слоями, выполнены на основе клеевого препрега на стеклоткани сатинового плетения с содержанием армирующего наполнителя не более 40 объемных процентов. Изобретение обеспечивает повышение ресурса, несущей способности при сжатии и весовой эффективности изделий. 2 н. и 5 з.п. ф-лы, 1 ил., 3 табл., 1 пр.

Изобретение относится к области слоистых гибридных композиционных материалов, содержащих внешние и внутренние листы из алюминий-литиевых сплавов и слои стеклопластика на основе клеевых препрегов с разным содержанием армирующего наполнителя, применяемых в качестве конструкционного материала для силовых обшивок крыла самолета, а также для использования в других транспортных средствах.

Многие годы обшивки крыла изготавливаются механической обработкой плит (листов, прессованных панелей): верхние из высокопрочных сплавов типа В95очТ2 (7475-Т76 за рубежом), отличающиеся, главным образом, повышенной статической прочностью при сжатии, нижние из ресурсных среднепрочных сплавов типа 1163Т (2524-Т351 за рубежом), отличающиеся повышенными характеристиками пластичности и трещиностойкости, и используются как монолитные стрингерные конструкции, с толщиной обработанного полотна ~5-10 мм (А.А. Туполев, В.В. Сулименков, В.К. Зельтин. Повышение эксплуатационных характеристик и эффективности конструкций пассажирских самолетов. Металловедение алюминиевых сплавов М., Наука, 1985, с. 22-40; О.Г. Сенаторова, В.В. Антипов, А.В. Бронз, А.В. Сомов, Н.Ю. Серебренникова. Высокопрочные и сверхпрочные сплавы традиционной системы Al-Zn-Mg-Cu, их роль в технике и возможности развития // ТЛС, 2016, №2, с. 43-49).

Известен класс слоистых гибридных алюмостеклопластиков под маркой GLARE (Glass + Aluminium + Reinforced), которые предложены и реализованы в обшивке фюзеляжа фирмой AKZO (Нидерланды) (ЕР 0312151 А1, опубл. 1989), состоящие из тонких одинаковой толщины (0,2-0,5 мм) листов традиционных сплавов систем легирования Al-Cu-Mg (2024-Т3 - типа Д16чТ) и Al-Zn-Mg-Cu (7475-Т76 - типа В95очТ2) и промежуточных слоев стеклопластика, как правило, на клеевом связующем, армированным непрерывными стекловолокнами из стекла типа S (серии ВМП в России).

Известны российские слоистые композиционные гибридные алюмостеклопластики марки СИАЛ (Стекло И Алюминий) пониженной плотности и повышенного модуля упругости на базе тонких листов из Al-Li сплавов типа ресурсного 1441 (RU №2185964, опубл. 27.07.2002; RU №2565215, опубл. 20.10.2015 г.), обозначенные маркой СИАЛ-1-1Р.

Материалы (GLARE и СИАЛ) используются в виде относительно тонких обшивок фюзеляжа толщиной до 2,5 мм (максимальной структуры 6/5, где 6 - количество алюминиевых листов и 5 - количество прослоек стеклопластика). Основные недостатки известных слоистых алюмостеклопластиков (GLARE и СИАЛ) применительно к крыльевым панелям состоят в следующем: при использовании в обшивках крыла требуется большая многослойность, при которой резко возрастает трудоемкость изготовления композита - усложняется подготовка поверхности тонких Al-Li листов (анодное окисление и покрытие грунтом) и ручная выкладка большего количества слоев клеевых препрегов; параллельно нарастают проблемы дефектности и трудности их определения.

По этим основным причинам разработанные многослойные материалы класса СИАЛ и GLARE сложно применять в массивных обшивках крыла увеличенной толщины.

Из уровня техники известен градиентный металлостеклопластик, состоящий из внешних листов одинаковой толщины высокомодульного Al-Li сплава с пределом текучести в диапазоне 300-400 МПа и слоев стеклопластика на базе термореактивного клеевого связующего с армирующим наполнителем из стекловолокон в виде тканей или ровинга. Он содержит внутренние листы из высокопрочного Al-Li сплава с пределом текучести более 500 МПа, причем каждый слой стеклопластика расположен между упомянутым внутренним листом и внешними листами, толщина внутреннего листа составляет 25-40% от общей толщины градиентного металлостеклопластика (RU 2565215, опубл. 20.10.2015, В32В 15/08).

Ближайшим аналогом заявленного изобретения является слоистый композиционный материал, состоящий из чередующихся алюминиевых листов и слоев стеклопластика с термореактивным связующим и армирующим наполнителем. Материал содержит, по крайней мере, два слоя алюминиевых листов, один из которых выполнен из высокомодульного Al-Li сплава пониженной плотности с содержанием Li более 1,5%, а другой - из сплава системы Al-Mg-Si при соотношении толщин слоев (70-12):1 (RU 2270098, опубл. 20.02.2006, В32В 15/08).

Недостатками данных материалов является малая толщина, пониженные несущая способность и сопротивление сжатию, недостаточная жесткость.

Технической задачей настоящего изобретения является создание слоистого гибридного композиционного материала на основе листов разной толщины из двух Al-Li сплавов и слоев стеклопластиков, обладающего повышенными ресурсом и несущей способностью при сжатии, при высоком сопротивлении усталостному разрушению, пониженной плотности, высокой прочности, повышенном модуле упругости, для конструкционного применения в основных силовых элементах планера самолета (типа обшивок крыла) и другой транспортной технике.

Технический результат заявленного изобретения заключается в создании слоистого гибридного композиционного материала на основе Al-Li листов с повышенным ресурсом и несущей способностью при сжатии, при сохранении высокого сопротивления усталостному разрушению и прочности, пониженной плотности, повышенного модуля упругости.

Для решения поставленной задачи предложен слоистый гибридный композиционный материал, содержащий внешние и внутренние слои из Al-Li сплавов и слои стеклопластика на базе клеевых препрегов с армирующим наполнителем. В качестве внешних слоев применяются Al-Li листы толщиной 1-2 мм. В качестве внутренних слоев используются Al-Li листы толщиной 0,3-0,5 мм в количестве не менее трех, при этом слои стеклопластика, расположенные под внешними Al-Li слоями, выполнены на основе клеевого препрега в виде стеклоткани сатинового плетения с содержанием армирующего наполнителя не более 40 объемных процентов (об. %).

В качестве металлических слоев используются листы из Al-Li сплавов с пониженной плотностью и повышенным модулем упругости при растяжении. Например, для внешних слоев - листы из Al-Li сплава с плотностью не более 2690 кг/м3 и модулем упругости при растяжении не менее 76 ГПа, для внутренних металлических слоев - листы из Al-Li сплава с плотностью не более 2620 кг/м3 и модулем упругости при растяжении не менее 78 ГПа.

Между внутренними листами Al-Li сплава может применяться стеклопластик, армированный стекловолокном не менее 60 объемных процентов.

Армирующий наполнитель между внутренними листами Al-Li сплава может быть выполнен в виде однонаправленной стеклоткани (с основой из высокопрочных стеклянных волокон и с утком из волокон легкоплавкого полимерного материала) или в виде стеклоровинга. Основа армирующего наполнителя между внутренними листами Al-Li сплава может быть выполнена из стеклянных волокон диаметром 5-20 мкм, плотностью 2500-2580 кг/м3, с пределом прочности 4000-5000 МПа, модулем упругости при растяжении 85-100 ГПа.

Клеевое связующее может быть выполнено на основе смеси эпоксидных смол, модифицированное термопластичным материалом с повышенной температурой отверждения 170-180°C и обеспечивает монолитность слоя стеклопластика и надежную связь между слоями композиционного материала.

Предложено также изделие, выполненное из заявленного слоистого гибридного композиционного материала.

Слоистый гибридный алюмополимерный композиционный материал (рис. 1) состоит из чередующихся листов разной толщины из Al-Li сплавов и слоев стеклопластика. Внешние (наружные) листы 1 имеют толщину 1-2 мм и выполнены из высокомодульного Al-Li сплава с плотностью не более 2690 кг/м3, внутренние 3 листы имеют толщину 0,3-0,5 мм и выполнены из высокомодульного Al-Li сплава с плотностью не более 2620 кг/м3. При этом количество внутренних (тонких) листов толщиной 0,3-0,5 мм в структуре составляет не менее трех, между которыми применен стеклопластик 4 с армирующим наполнителем не менее 60 объемных процентов из однонаправленных стеклянных волокон в виде стеклоровинга или однонаправленной стеклоткани. Между внешними листами толщиной 1-2 мм применен стеклопластик 2 на базе клеевого препрега в виде стеклоткани сатинового плетения с содержанием армирующего наполнителя не более 40 объемных процентов.

Предложенная регламентация количества внутренних тонких листов толщиной 0,3-0,5 мм в структуре не менее трех, между которыми применен стеклопластик на базе клеевого препрега с армирующим наполнителем из однонаправленных стеклянных волокон не менее 60 объемных процентов, обеспечивает повышение в 5-10 раз сопротивления росту трещиноусталости слоистого гибридного материала, что ведет к повышению ресурса.

Использование в составе слоистого гибридного материала листов из Al-Li сплавов пониженной плотности позволяет дополнительно повысить весовую эффективность, при этом применение в качестве внешних слоев листов увеличенной толщины 1-2 мм из высокомодульного Al-Li сплава с плотностью не более 2690 кг/м3 ведет также к повышению несущей способности и жесткости конструкции.

Использование в составе слоистого гибридного материала слоев стеклопластика на основе клеевых препрегов с разным содержанием армирующего наполнителя позволяет повысить предел прочности при растяжении и сжатии, при этом стеклопластик, расположенный между внешними листами увеличенной толщины, армирован стеклотканью сатинового плетения, что способствует повышению статической прочности материала в поперечном направлении. Между внутренними тонкими листами применен стеклопластик, армированный однонаправленными стеклянными волокнами.

Применение стеклопластика, армированного тканью сатинового плетения, взамен стеклопластика, армированного ровингом из традиционных высокопрочных волокон (ВМП, S и др.), способствует повышению статических прочностных свойств материала по ширине, т.к. обшивка крыла самолета испытывает действие рабочих нагрузок в долевом и поперечном направлениях.

Пониженное содержание до 40 объемных процентов армирующего наполнителя обеспечивает достаточное качество соединения внешних листов, о чем свидетельствуют прямые испытания на сдвиг (таблица 1) и отсутствие расслоений в образцах при других видах испытаний.

Дополнительным фактором является совместимость сплавов внешних и внутренних Al-Li листов по температурно-временным параметрам упрочняющей термообработки. Эти параметры, в свою очередь, совместимы с повышенной температурой отверждения (170-180°C) используемого клеевого модифицированного связующего для создания надежной связи между металлическими листами и полимерными слоями и повышения температуры эксплуатации композиционного материала.

На рисунке 1 приведена схема слоистого гибридного материала, где:

1 - внешний (наружный) слой толщиной 1,0-2,0 мм из Al-Li сплава;

2 - стеклопластик на базе клеевого препрега на стеклоткани с содержанием армирующего наполнителя не более 40 об. %;

3 - внутренний слой толщиной 0,3-0,5 мм из Al-Li сплава;

4 - стеклопластик на базе клеевого препрега на ровинге или однонаправленной стеклоткани с содержанием армирующего наполнителя не менее 60 об. %.

В таблице 3 показаны механические и физические свойства листовых заготовок из заявленного (примеры 2, 3), экспериментального (пример 1, 4), известных (примеры 5, 6) слоистых композиционных материалов и известного монолитного материала (пример 7). Пример 1 - с содержанием в структуре двух внутренних листов толщиной 0,3-0,5 мм; пример 2 - с содержанием в структуре трех внутренних листов толщиной 0,3-0,5 мм; пример 3 - с содержанием в структуре четырех внутренних листов толщиной 0,3-0,5 мм; пример 4 - с содержанием в структуре трех внутренних листов толщиной 0,3-0,5 мм и прослойками стеклопластика, армированного тканью (до 40 об. %); пример 5 - СИАЛ-1-1Р с одинаковыми по толщине листами из Al-Li сплава и прослойками стеклопластика на ровинге; пример 6 - GLARE с одинаковыми по толщине среднепрочными листами из сплава 2024 системы Al-Cu и прослойками стеклопластика на ровинге; пример 7 - монолитный лист толщиной 5-10 мм из Al-Li сплава.

Примеры осуществления

В опытно-промышленном производстве были отформованы слоистые гибридные листовые заготовки предлагаемого композиционного материала габаритами 5×500×500 мм, состоящие из: двух внешних (наружных) листов Al-Li сплава (толщиной от 1,0 до 2,0 мм, пределом прочности σB~560 МПа, пониженной плотностью d~2680 кг/м3 и повышенным модулем упругости Е~78 ГПа) и слоев внутренних однонаправленых алюмостеклопластиков структуры 2/1, 3/2 и 4/3 на основе тонких листов из Al-Li сплава (толщиной 0,35 мм (в количестве двух, трех, четырех), пределом прочности σB~460 МПа, пониженной плотностью d~2590 кг/м3 и повышенным модулем упругости Е~79 ГПа) и слоев стеклопластика с тканевым армирующим наполнителем не более 40 об. %, расположенные между внешними Al-Li слоями, и слоев стеклопластика с ровингом, армированным не менее 60 об. % непрерывными высокопрочными волокнами между внутренними тонкими листами в однонаправленных алюмостеклопластиках структуры 2/1, 3/2 и 4/3.

Алюминий-литиевые листы подвергали предварительной подготовке поверхности: обезжириванию, травлению, анодному окислению и покрытию адгезионным грунтом. Выкладку материала осуществляли ручным методом. Формование листовых заготовок слоистого гибридного материала проводили автоклавным способом при повышенной температуре отверждения модифицированного связующего (170-180°C).

Микроструктуру и регламентированные соотношения листов и слоев стеклопластика, объемное содержание компонентов в слоистом гибридном материале оценивали на шлифах, вырезанных из разных зон, методами количественного микроструктурного анализа в оптическом микроскопе.

Таким образом, предложенный трещиностойкий, легкий, высокопрочный, высокомодульный слоистый гибридный композиционный материал расширяет возможности производства деталей, обеспечивает повышение ресурса, надежности, весовой эффективности, жесткости, несущей способности при сжатии, температурного диапазона эксплуатации изделий.

Материал рекомендуется для изготовления обшивок (панелей) крыла самолета, а также для изделий наземного транспорта и другой транспортной техники взамен монолитных плит (листов, прессованных панелей) из алюминиевых и Al-Li сплавов и слоистых материалов серии СИАЛ/GLARE.


Слоистый гибридный композиционный материал и изделие, выполненное из него
Источник поступления информации: Роспатент

Показаны записи 281-290 из 369.
29.03.2019
№219.016.f659

Способ получения жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к получению жаропрочных никелевых сплавов, и может быть использовано для изготовления сварных корпусов, кожухов высоконагруженных деталей авиационных газотурбинных двигателей. Способ включает расплавление в вакууме шихтовых материалов,...
Тип: Изобретение
Номер охранного документа: 0002404273
Дата охранного документа: 20.11.2010
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d22

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Предложен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение...
Тип: Изобретение
Номер охранного документа: 0002256722
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d30

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения отливок из жаропрочных сплавов, в частности турбинных лопаток газотурбинных двигателей и установок. Устройство содержит зону нагрева с нагревателем и зону охлаждения, разделенные теплоизолирующим экраном. В зоне нагрева расположен нагреватель с...
Тип: Изобретение
Номер охранного документа: 0002258578
Дата охранного документа: 20.08.2005
Показаны записи 281-290 из 339.
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3218

Способ термомеханической обработки изделий из титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать...
Тип: Изобретение
Номер охранного документа: 0002457273
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.339c

Литейный сплав на основе алюминия

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др. взамен штамповок, работающих...
Тип: Изобретение
Номер охранного документа: 0002447174
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
+ добавить свой РИД