×
13.02.2018
218.016.212a

Результат интеллектуальной деятельности: СПОСОБ МЕДЛЕННОГО ВЫВОДА ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

№ охранного документа
0002641658
Дата охранного документа
19.01.2018
Аннотация: Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц, которые используют байпасные системы. Предлагаемый способ решает задачу уменьшения потерь частиц при медленном выводе с использованием байпасной системы пучка и уменьшения искажений импульсного магнитного поля экранами системы вывода пучка. Задача решается путем использования градиентных дипольных полей, которые обладают градиентным импульсом силы. Нарастающим магнитным полем градиентного диполя пучок отклоняется к системе вывода и дефокусируется для увеличения его радиального размера в области апертуры выводного устройства. При увеличении магнитного поля часть частиц пучка, которая попала в апертуру выводного дефлектора выводится из ускорителя, а оставшаяся часть фокусируется и снова вводится на равновесную орбиту. Величина магнитного поля увеличивается до тех пор, пока все частицы пучка не будут выведены из ускорителя. Технический результат – уменьшение искажений магнитного поля вокруг экрана и уменьшение потерь частиц пучка в стенке дефлектора. 1 ил.

Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц.

Существует несколько способов медленного вывода пучков. Наибольшее распространение получил вывод с использованием резонансной раскачки бетатронных колебаний заряженных частиц [1]. Суть этого метода заключается в том, что в одной из поперечных фазовых плоскостей создают условия сильного нелинейного резонанса. Частицы циркулирующего пучка в начале занимают устойчивую область движения фазового пространства. Затем создаются условия, когда частицы пересекают сепаратрису нелинейного резонанса и попадают в неустойчивую область движения, где амплитуда колебаний быстро возрастает и частицы попадают в апертуру выводного устройства.

Другой способ вывода связан с использованием байпасной системы отклонения пучка от равновесной орбиты [2]. В этом способе полями четырех одинаковых дипольных магнитов формируют байпасную систему, которая сначала отклоняет, а затем возвращает пучок на равновесную орбиту. С увеличением магнитной индукции магнитных полей диполей величина отклонения растет. При приближении пучка к магнитному экрану включают быстрый ударный магнит, который отклоняет траекторию пучка внутрь магнитного экрана. После чего пучок не возвращается на равновесную орбиту, а выводится из ускорителя.

В качестве прототипа выбираем способ вывода с использованием байпасной системы отклонения пучка от равновесной орбиты [2]. Одной из проблем, которая осложняет реализацию этого способа вывода пучка, является возмущение поля магнитным экраном устройства вывода пучка. Создание экранов с малыми возмущениями импульсных магнитных полей одновременно и в пространстве, и во времени представляет сложную задачу. В данном способе вывода пучков [2] предлагается использовать многослойный медно-железный экран. Кроме того, толщина такого экрана сравнима с поперечными размерами выводимого пучка, что приводит к существенным потерям частиц пучка в стенках экрана.

Целью предлагаемого изобретения является уменьшение искажений магнитного поля вокруг экрана и уменьшения потерь частиц в стенках выводного устройства при байпасном выводе пучка.

Способ заключается в том, что, используя переменные во времени магнитные поля, постепенно отклоняют траекторию пучка частиц от равновесной орбиты и при достижении траекторией пучка апертуры выводного устройства выводят частицы из ускорителя, частицы пучка одновременно дефокусируют и отклоняют от равновесной орбиты нарастающим во времени магнитным полем первого входного диполя, часть частиц отклоненного и дефокусированного пучка, которые достигли апертуры выводного устройства, выводятся из ускорителя, а частицы дефокусированного пучка, не попавшие в апертуру выводного устройства, фокусируют полями второго и третьего магнитных диполей и отклоняют обратно к оси, а полями четвертого магнитного диполя не выведенные из ускорителя частицы снова вводятся на равновесную орбиту, магнитные поля всех диполей увеличивают до тех пор, пока все частицы не будут выведены из ускорителя, отклонение фокусировку и дефокусировку пучка производят полями диполей с градиентом импульса силы G=d(Ft)/dy (где G - градиент импульса силы, F - сила, действующая на частицу, t - время действия силы y - поперечная координата диполя), при этом для экранировки переменного магнитные поля в устройстве вывода его стенки выполняют из тонкого немагнитного металла с толщиной стенки более скин-слоя, а для уменьшения искажений магнитного поля в области частиц пучка, не попавших в апертуру выводного устройства, стенки этого устройства выполняют параллельно силовым линиям магнитного поля.

Отличительными признаками заявленного способа является следующее:

Частицы пучка одновременно дефокусируют и отклоняют от равновесной орбиты нарастающим во времени магнитным полем первого диполя на входе в байпасную систему. В результате действия дефокусирующих и отклоняющих сил пучок, дрейфуя в пространстве дрейфа между диполями, увеличивает свой размер и величину отклонения от оси системы. При слабых полях в диполях байпасной системы все частицы пучка возвращаются на равновесную орбиту. С ростом полей растет отклонение пучка и часть частиц, достигнув апертуры выводного устройства (дефлектора), будут выведены из ускорителя. Большой размер пучка у дефлектора уменьшает потери частиц в его стенках. Магнитные поля второго и третьего диполей фокусируют оставшиеся частицы и отклоняют их к оси системы, где полем четвертого диполя вводятся на равновесную орбиту. Отклонение, фокусировку и дефокусровку пучка производят полями диполей с градиентным импульсом силы G=d(Ft)/dy, (где G - градиент импульса силы, F - сила, действующая на частицу, t - время действия силы y - поперечная координата диполя), при этом для экранировки переменного магнитные поля в устройстве вывода его стенки выполняют из тонкого немагнитного металла с толщиной стенки более скин-слоя, а для уменьшения искажений магнитного поля в области частиц пучка, не попавших в апертуру выводного устройства, стенки этого устройства выполняют параллельно силовым линиям магнитного поля. Малая толщина стенок выводного дефлектора и большой размер пучка у дефлектора способствует существенному уменьшению потерь частиц пучка. Поскольку силовые линии переменного магнитного поля всегда огибают электропроводящий метал, то параллельные силовым линиям стенки дефлектора не вызовут искажения магнитного поля.

Поставленная цель достигается тем, что совокупность всех существенных признаков позволяет существенно уменьшить искажения магнитного поля дефлектором и потери частиц пучка в дефлекторе при байпасном способе медленного вы вода пучка частиц из кольцевых ускорителей и накопителей частиц.

Перечень иллюстраций

На Фиг. 1 (Приложение) Приведена схема вывода пучка заряженных частиц из кольцевых ускорителей и накопителей частиц с использованием байпасного метода отклонения пучка,

где:

1 и 4 - градиентные диполи с фокусным расстоянием ƒ1 (1 - входной диполь дефокусирует пучок и отклоняет его от равновесной орбиты, 4 - выходной диполь инжектирует частицы на равновесную орбиту).

2 и 3 - диполи с фокусным расстоянием ƒ2 (фокусируют пучок и отклоняют его на равновесную орбиту).

5 - выводное устройство (дефлектор).

l - участок дрейфа.

, , - размеры огибающей пучка.

ζ - смещение элементов системы.

Способ работает следующим образом.

Отклонение, фокусировку/дефокусировку пучка производят градиентными диполями 1, 2, 3 и 4 (Рис. 1). Градиент импульса силы диполя равен:

где:

F - сила, действующая на частицу,

t - время пролета частицы в диполе,

q - заряд частицы,

y - поперечная координата диполя.

Градиентный диполь 1 на входе в систему дефокусирует и отклоняет пучок от равновесной орбиты и приближая его к выводному устройству 5 (дефлектору). При этом дефокусирока пучка увеличивает его радиальный размер с целью сделать его значительно больше толщины стенки дефлектора, чтобы уменьшить потери частиц в стенке.

Суммарное действие двух градиентных диполей 2 и 3 приводит к обратному отклонению пучка к равновесной орбите. При этом диполи фокусируют частицы пучка, которые не достигли апертуры выводного устройства (дефлектора).

Градиентный диполь 4 на выходе байпасной системы выводит пучок из системы на равновесную орбиту.

Для осуществления байпасного вывода пучка на равновесную орбиту требуется выполнение условия:

где l - длина участка дрейфа,

ƒ1 - фокусные расстояния градиентных диполей 1 и 4,

ƒ2 - фокусные расстояния градиентных диполей 2 и 3,

Величина фокусных расстояний определяется, соотношением:

где:

q - заряд частиц,

B1 - магнитная индукция диполей 1 и 4,

B2 - магнитная индукция диполей 2 и 3,

Р - импульс частиц,

tgα1 - геометрический параметр диполей 1 и 4,

tgα2 - геометрический параметр диполей 2 и 3.

После включения системы питания градиентных диполей и увеличения их полей отклоненный пучок, проходя байпасную систему, будет возвращается на равновесную орбиту до тех пор, пока пучок не достигнет апертуры дефлектора. Часть частиц, которые достигли апертуры дефлектора, будут выведены из ускорителя. Оставшаяся часть частиц пучка, пройдя байпасную систему, будут снова введены на равновесную орбиту. Увеличение магнитных полей в градиентных диполях продолжается до тех пор, пока все частицы пучка не будут выведены.

Величину потерь частиц в стенках дефлектора определяют из соотношения размера огибающей пучка в области дефлектора и толщины стенки дефлектора. Размер огибающей пучка в области дефлектора αdef равен:

где:

- огибающая пучка на входе в байпасную систему,

- огибающая пучка в области дефлектора,

l - длина участка дрейфа.

При размер огибающей пучка у дефлектора много больше, чем размер αin на входе в байпасную систему, , что приведет к уменьшению потерь частиц в стенки дефлектора.

Для частного случая, когда формируют однородные магнитные поля, используют треугольную форму магнитных полюсов градиентных диполей (Фиг. 1). У таких диполей величина градиента силы диполей G1,2 и фокусные расстояния ƒ1,2 равны:

G1,2=qB1,2⋅tgα1,2,

где R1,2 - циклический радиус частицы в полях В12, tgα1,2 - геометрический фактор диполей (Фиг. 1).

где q и Р - заряд и импульс частицы.

Здесь индекс «1» относится к 1 и 4 диполям, индекс «2» - к 2 и 3 диполям.

Для реализации данной системы медленного вывода частиц необходимы диполи с величиной магнитной индукции В1,2≤2T, которая зависит от заряда, массы и энергии частицы. Магнитные полюса диполей выполняют из стандартной электротехнической стали.

Литература

1. И.Б. Иссинский. «Введение в физику ускорителей заряженных частиц», Часть 4, Издательский отдел Объединенного института ядерных исследований, 141980, г. Дубна, Московской обл.

2. А.V. Bondarenko, N.A. Vinokurov. «Beam extraction from a synchrotron through a magnetic shield». Nuclear Inst. and Methods in Physics Research, A 603 (2009), pp. 10-12.

Способ медленного вывода пучка заряженных частиц из магнитной системы кольцевых ускорителей и накопителей частиц, заключающийся в том, что, используя переменные во времени магнитные поля, постепенно отклоняют траекторию пучка частиц от равновесной орбиты и при достижении траекторией пучка апертуры выводного устройства выводят частицы из ускорителя, отличающийся тем, что частицы пучка одновременно дефокусируют и отклоняют от равновесной орбиты нарастающим во времени магнитным полем первого входного диполя, часть частиц отклоненного и дефокусированного пучка, которые достигли апертуры выводного устройства, выводят из ускорителя, а частицы дефокусированного пучка, не попавшие в апертуру выводного устройства, фокусируют полями второго и третьего магнитных диполей и отклоняются обратно к оси, а полями четвертого магнитного диполя не выведенные из ускорителя частицы снова вводятся на равновесную орбиту, магнитные поля всех диполей увеличивают до тех пор, пока все частицы не будут выведены из ускорителя, отклонение, фокусировку и дефокусировку пучка производят полями с градиентом импульса силы G=d(Ft)/dy (где G - градиент импульса силы, F - сила, действующая на частицу, t - время действия силы y - поперечная координата диполя), при этом для экранировки переменного магнитного поля в устройстве вывода его стенки выполняют из тонкого немагнитного металла с толщиной стенки более скин-слоя, а для уменьшения искажений магнитного поля в области частиц пучка, не попавших в апертуру выводного устройства, стенки этого устройства выполнены параллельно силовым линиям магнитного поля.
СПОСОБ МЕДЛЕННОГО ВЫВОДА ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ
СПОСОБ МЕДЛЕННОГО ВЫВОДА ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 42.
25.08.2017
№217.015.c1c9

Способ получения радиоизотопов серебра без носителя

Изобретение относится к способу получения радиоизотопов серебра. Заявленный способ заключается в том, что металлический кадмий или ртуть облучают протонами высокой энергии и вещество мишени отгоняют в атмосфере водорода с выделением нелетучих спалогенных продуктов, включающих радиоизотопы...
Тип: Изобретение
Номер охранного документа: 0002617715
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c5ba

Способ синхронного ускорения заряженных частиц в постоянном магнитном поле

Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков...
Тип: Изобретение
Номер охранного документа: 0002618626
Дата охранного документа: 05.05.2017
29.12.2017
№217.015.fd44

Способ профилактики нарушений психоневрологического статуса при острой лучевой болезни в эксперименте

Изобретение относится к экспериментальной медицине и может найти применение в космонавтике для поддержания на высоком уровне операторской деятельности космонавтов в условиях не прогнозированного воздействия радиации, а также реабилитации пациентов после протонной терапии опухолей головного...
Тип: Изобретение
Номер охранного документа: 0002638270
Дата охранного документа: 12.12.2017
20.01.2018
№218.016.0fff

Устройство для эмиссионного и массового спектрального анализа органических веществ

Изобретение относится к устройствам для спектрального анализа элементного состава вещества. Заявленное устройство для эмиссионного и массового спектрального анализа органических веществ содержит штуцер для подачи рабочего газа, плазменную горелку, плазмообразующий электрод, дополнительный...
Тип: Изобретение
Номер охранного документа: 0002633657
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10d7

Способ фокусировки пучков заряженных частиц

Изобретение относится к области и к способу фокусировки пучков заряженных частиц. В заявленном способе формируют систему магнитных полей, поочередно отклоняют ими частицы к оси и от оси системы, осуществляя таким образом жесткую фокусировку частиц, отклонение частиц проводят полями диполей с...
Тип: Изобретение
Номер охранного документа: 0002633770
Дата охранного документа: 18.10.2017
10.05.2018
№218.016.3aa5

Способ многооборотной инжекции заряженных частиц в циклический ускоритель

Изобретение относится к ускорительной технике и может быть использовано в циклических ускорителях. Способ многооборотной инжекции заряженных частиц в циклический ускоритель заключается в том, что для ввода частиц на линейном участке орбиты ускорителя, частицы предварительно инжектируются в...
Тип: Изобретение
Номер охранного документа: 0002647497
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.4715

Криогенное фланцевое разъемное соединение для шарикового холодного замедлителя нейтронов

Изобретение относится к криогенной технике, а именно к криогенному фланцевому разъемному соединению для шарикового холодного замедлителя нейтронов, и предназначено для транспортировки веществ в любых агрегатных состояниях при криогенных температурах по транспортному трубопроводу в рабочую...
Тип: Изобретение
Номер охранного документа: 0002650509
Дата охранного документа: 16.04.2018
18.05.2018
№218.016.51d3

Способ определения коэффициента пуассона материала герметичной тонкостенной полимерной трубки

Изобретение относится к способам измерения коэффициента Пуассона материала готовой герметичной тонкостенной полимерной трубки и может быть использовано для создания координатных детекторов на базе цилиндрических тонкостенных дрейфовых трубок, включающих, как правило, несколько тысяч каналов...
Тип: Изобретение
Номер охранного документа: 0002653186
Дата охранного документа: 07.05.2018
05.07.2018
№218.016.6b69

Полупроводниковый пиксельный детектор заряженных сильно ионизирующих частиц (многозарядных ионов)

Использование: для создания полупроводникового пиксельного детектора сильно ионизирующих заряженных частиц. Сущность изобретения заключается в том, что детектор включает последовательное соединение монолитного слоя высокоомного полупроводникового материала (сенсора) со сплошным внешним и...
Тип: Изобретение
Номер охранного документа: 0002659717
Дата охранного документа: 03.07.2018
04.10.2018
№218.016.8ea6

Способ изменения реактивности в импульсных ядерных установках периодического действия на быстрых нейтронах с порогово-делящимися изотопами

Изобретение относится к области нейтронной физики и физики ядерных установок, а именно к способам изменения реактивности в ядерных установках. Способ изменения реактивности в импульсных ядерных установках периодического действия на быстрых нейтронах с порогово-делящимися изотопами заключается...
Тип: Изобретение
Номер охранного документа: 0002668546
Дата охранного документа: 02.10.2018
Показаны записи 31-40 из 41.
25.08.2017
№217.015.c1c9

Способ получения радиоизотопов серебра без носителя

Изобретение относится к способу получения радиоизотопов серебра. Заявленный способ заключается в том, что металлический кадмий или ртуть облучают протонами высокой энергии и вещество мишени отгоняют в атмосфере водорода с выделением нелетучих спалогенных продуктов, включающих радиоизотопы...
Тип: Изобретение
Номер охранного документа: 0002617715
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c5ba

Способ синхронного ускорения заряженных частиц в постоянном магнитном поле

Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков...
Тип: Изобретение
Номер охранного документа: 0002618626
Дата охранного документа: 05.05.2017
29.12.2017
№217.015.fd44

Способ профилактики нарушений психоневрологического статуса при острой лучевой болезни в эксперименте

Изобретение относится к экспериментальной медицине и может найти применение в космонавтике для поддержания на высоком уровне операторской деятельности космонавтов в условиях не прогнозированного воздействия радиации, а также реабилитации пациентов после протонной терапии опухолей головного...
Тип: Изобретение
Номер охранного документа: 0002638270
Дата охранного документа: 12.12.2017
20.01.2018
№218.016.0fff

Устройство для эмиссионного и массового спектрального анализа органических веществ

Изобретение относится к устройствам для спектрального анализа элементного состава вещества. Заявленное устройство для эмиссионного и массового спектрального анализа органических веществ содержит штуцер для подачи рабочего газа, плазменную горелку, плазмообразующий электрод, дополнительный...
Тип: Изобретение
Номер охранного документа: 0002633657
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10d7

Способ фокусировки пучков заряженных частиц

Изобретение относится к области и к способу фокусировки пучков заряженных частиц. В заявленном способе формируют систему магнитных полей, поочередно отклоняют ими частицы к оси и от оси системы, осуществляя таким образом жесткую фокусировку частиц, отклонение частиц проводят полями диполей с...
Тип: Изобретение
Номер охранного документа: 0002633770
Дата охранного документа: 18.10.2017
10.05.2018
№218.016.3aa5

Способ многооборотной инжекции заряженных частиц в циклический ускоритель

Изобретение относится к ускорительной технике и может быть использовано в циклических ускорителях. Способ многооборотной инжекции заряженных частиц в циклический ускоритель заключается в том, что для ввода частиц на линейном участке орбиты ускорителя, частицы предварительно инжектируются в...
Тип: Изобретение
Номер охранного документа: 0002647497
Дата охранного документа: 16.03.2018
04.07.2018
№218.016.6a9b

Способ медленного вывода пучка заряженных частиц из циклического ускорителя

Изобретение относится к способу вывода частиц из кольцевых ускорителей и в первую очередь из кольцевых ускорителей с постоянным магнитным полем и практически постоянным радиусом. Для вывода частиц используют отражение частиц полями постоянных магнитов, в котором угол отражения равен углу...
Тип: Изобретение
Номер охранного документа: 0002659572
Дата охранного документа: 03.07.2018
13.01.2019
№219.016.af8e

Устройство для вывода заряженных частиц из циклического ускорителя

Изобретение относится к ускорительной технике и может быть использовано для вывода частиц из циклических ускорителей. Устройство состоит из трех магнитных диполей, два из которых, входной и выходной, расположены под углом друг к другу, а третий диполь расположен параллельно входному диполю и...
Тип: Изобретение
Номер охранного документа: 0002676757
Дата охранного документа: 11.01.2019
29.04.2019
№219.017.40ed

Способ формирования ускоряющего напряжения в резонансном ускорителе заряженных частиц

Изобретение относится к ускорительной технике и может быть использовано при создании резонансных ускорителей промышленного назначения. Способ формирования ускоряющего напряжения в резонансном ускорителе заряженных частиц заключается в возбуждении резонансных колебаний в коаксиальной линии...
Тип: Изобретение
Номер охранного документа: 0002395936
Дата охранного документа: 27.07.2010
20.02.2020
№220.018.040d

Магнитная система индукционного синхротрона с постоянным во времени магнитным полем

Изобретение относится к ускорительной технике и может быть использовано при разработке индукционных циклических ускорителей с практически постоянным радиусом орбиты и постоянным во времени магнитным полем. Индукционный, не резонансный способ ускорения решает задачу синхронизации в широком...
Тип: Изобретение
Номер охранного документа: 0002714505
Дата охранного документа: 18.02.2020
+ добавить свой РИД