×
13.02.2018
218.016.212a

Результат интеллектуальной деятельности: СПОСОБ МЕДЛЕННОГО ВЫВОДА ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

№ охранного документа
0002641658
Дата охранного документа
19.01.2018
Аннотация: Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц, которые используют байпасные системы. Предлагаемый способ решает задачу уменьшения потерь частиц при медленном выводе с использованием байпасной системы пучка и уменьшения искажений импульсного магнитного поля экранами системы вывода пучка. Задача решается путем использования градиентных дипольных полей, которые обладают градиентным импульсом силы. Нарастающим магнитным полем градиентного диполя пучок отклоняется к системе вывода и дефокусируется для увеличения его радиального размера в области апертуры выводного устройства. При увеличении магнитного поля часть частиц пучка, которая попала в апертуру выводного дефлектора выводится из ускорителя, а оставшаяся часть фокусируется и снова вводится на равновесную орбиту. Величина магнитного поля увеличивается до тех пор, пока все частицы пучка не будут выведены из ускорителя. Технический результат – уменьшение искажений магнитного поля вокруг экрана и уменьшение потерь частиц пучка в стенке дефлектора. 1 ил.

Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц.

Существует несколько способов медленного вывода пучков. Наибольшее распространение получил вывод с использованием резонансной раскачки бетатронных колебаний заряженных частиц [1]. Суть этого метода заключается в том, что в одной из поперечных фазовых плоскостей создают условия сильного нелинейного резонанса. Частицы циркулирующего пучка в начале занимают устойчивую область движения фазового пространства. Затем создаются условия, когда частицы пересекают сепаратрису нелинейного резонанса и попадают в неустойчивую область движения, где амплитуда колебаний быстро возрастает и частицы попадают в апертуру выводного устройства.

Другой способ вывода связан с использованием байпасной системы отклонения пучка от равновесной орбиты [2]. В этом способе полями четырех одинаковых дипольных магнитов формируют байпасную систему, которая сначала отклоняет, а затем возвращает пучок на равновесную орбиту. С увеличением магнитной индукции магнитных полей диполей величина отклонения растет. При приближении пучка к магнитному экрану включают быстрый ударный магнит, который отклоняет траекторию пучка внутрь магнитного экрана. После чего пучок не возвращается на равновесную орбиту, а выводится из ускорителя.

В качестве прототипа выбираем способ вывода с использованием байпасной системы отклонения пучка от равновесной орбиты [2]. Одной из проблем, которая осложняет реализацию этого способа вывода пучка, является возмущение поля магнитным экраном устройства вывода пучка. Создание экранов с малыми возмущениями импульсных магнитных полей одновременно и в пространстве, и во времени представляет сложную задачу. В данном способе вывода пучков [2] предлагается использовать многослойный медно-железный экран. Кроме того, толщина такого экрана сравнима с поперечными размерами выводимого пучка, что приводит к существенным потерям частиц пучка в стенках экрана.

Целью предлагаемого изобретения является уменьшение искажений магнитного поля вокруг экрана и уменьшения потерь частиц в стенках выводного устройства при байпасном выводе пучка.

Способ заключается в том, что, используя переменные во времени магнитные поля, постепенно отклоняют траекторию пучка частиц от равновесной орбиты и при достижении траекторией пучка апертуры выводного устройства выводят частицы из ускорителя, частицы пучка одновременно дефокусируют и отклоняют от равновесной орбиты нарастающим во времени магнитным полем первого входного диполя, часть частиц отклоненного и дефокусированного пучка, которые достигли апертуры выводного устройства, выводятся из ускорителя, а частицы дефокусированного пучка, не попавшие в апертуру выводного устройства, фокусируют полями второго и третьего магнитных диполей и отклоняют обратно к оси, а полями четвертого магнитного диполя не выведенные из ускорителя частицы снова вводятся на равновесную орбиту, магнитные поля всех диполей увеличивают до тех пор, пока все частицы не будут выведены из ускорителя, отклонение фокусировку и дефокусировку пучка производят полями диполей с градиентом импульса силы G=d(Ft)/dy (где G - градиент импульса силы, F - сила, действующая на частицу, t - время действия силы y - поперечная координата диполя), при этом для экранировки переменного магнитные поля в устройстве вывода его стенки выполняют из тонкого немагнитного металла с толщиной стенки более скин-слоя, а для уменьшения искажений магнитного поля в области частиц пучка, не попавших в апертуру выводного устройства, стенки этого устройства выполняют параллельно силовым линиям магнитного поля.

Отличительными признаками заявленного способа является следующее:

Частицы пучка одновременно дефокусируют и отклоняют от равновесной орбиты нарастающим во времени магнитным полем первого диполя на входе в байпасную систему. В результате действия дефокусирующих и отклоняющих сил пучок, дрейфуя в пространстве дрейфа между диполями, увеличивает свой размер и величину отклонения от оси системы. При слабых полях в диполях байпасной системы все частицы пучка возвращаются на равновесную орбиту. С ростом полей растет отклонение пучка и часть частиц, достигнув апертуры выводного устройства (дефлектора), будут выведены из ускорителя. Большой размер пучка у дефлектора уменьшает потери частиц в его стенках. Магнитные поля второго и третьего диполей фокусируют оставшиеся частицы и отклоняют их к оси системы, где полем четвертого диполя вводятся на равновесную орбиту. Отклонение, фокусировку и дефокусровку пучка производят полями диполей с градиентным импульсом силы G=d(Ft)/dy, (где G - градиент импульса силы, F - сила, действующая на частицу, t - время действия силы y - поперечная координата диполя), при этом для экранировки переменного магнитные поля в устройстве вывода его стенки выполняют из тонкого немагнитного металла с толщиной стенки более скин-слоя, а для уменьшения искажений магнитного поля в области частиц пучка, не попавших в апертуру выводного устройства, стенки этого устройства выполняют параллельно силовым линиям магнитного поля. Малая толщина стенок выводного дефлектора и большой размер пучка у дефлектора способствует существенному уменьшению потерь частиц пучка. Поскольку силовые линии переменного магнитного поля всегда огибают электропроводящий метал, то параллельные силовым линиям стенки дефлектора не вызовут искажения магнитного поля.

Поставленная цель достигается тем, что совокупность всех существенных признаков позволяет существенно уменьшить искажения магнитного поля дефлектором и потери частиц пучка в дефлекторе при байпасном способе медленного вы вода пучка частиц из кольцевых ускорителей и накопителей частиц.

Перечень иллюстраций

На Фиг. 1 (Приложение) Приведена схема вывода пучка заряженных частиц из кольцевых ускорителей и накопителей частиц с использованием байпасного метода отклонения пучка,

где:

1 и 4 - градиентные диполи с фокусным расстоянием ƒ1 (1 - входной диполь дефокусирует пучок и отклоняет его от равновесной орбиты, 4 - выходной диполь инжектирует частицы на равновесную орбиту).

2 и 3 - диполи с фокусным расстоянием ƒ2 (фокусируют пучок и отклоняют его на равновесную орбиту).

5 - выводное устройство (дефлектор).

l - участок дрейфа.

, , - размеры огибающей пучка.

ζ - смещение элементов системы.

Способ работает следующим образом.

Отклонение, фокусировку/дефокусировку пучка производят градиентными диполями 1, 2, 3 и 4 (Рис. 1). Градиент импульса силы диполя равен:

где:

F - сила, действующая на частицу,

t - время пролета частицы в диполе,

q - заряд частицы,

y - поперечная координата диполя.

Градиентный диполь 1 на входе в систему дефокусирует и отклоняет пучок от равновесной орбиты и приближая его к выводному устройству 5 (дефлектору). При этом дефокусирока пучка увеличивает его радиальный размер с целью сделать его значительно больше толщины стенки дефлектора, чтобы уменьшить потери частиц в стенке.

Суммарное действие двух градиентных диполей 2 и 3 приводит к обратному отклонению пучка к равновесной орбите. При этом диполи фокусируют частицы пучка, которые не достигли апертуры выводного устройства (дефлектора).

Градиентный диполь 4 на выходе байпасной системы выводит пучок из системы на равновесную орбиту.

Для осуществления байпасного вывода пучка на равновесную орбиту требуется выполнение условия:

где l - длина участка дрейфа,

ƒ1 - фокусные расстояния градиентных диполей 1 и 4,

ƒ2 - фокусные расстояния градиентных диполей 2 и 3,

Величина фокусных расстояний определяется, соотношением:

где:

q - заряд частиц,

B1 - магнитная индукция диполей 1 и 4,

B2 - магнитная индукция диполей 2 и 3,

Р - импульс частиц,

tgα1 - геометрический параметр диполей 1 и 4,

tgα2 - геометрический параметр диполей 2 и 3.

После включения системы питания градиентных диполей и увеличения их полей отклоненный пучок, проходя байпасную систему, будет возвращается на равновесную орбиту до тех пор, пока пучок не достигнет апертуры дефлектора. Часть частиц, которые достигли апертуры дефлектора, будут выведены из ускорителя. Оставшаяся часть частиц пучка, пройдя байпасную систему, будут снова введены на равновесную орбиту. Увеличение магнитных полей в градиентных диполях продолжается до тех пор, пока все частицы пучка не будут выведены.

Величину потерь частиц в стенках дефлектора определяют из соотношения размера огибающей пучка в области дефлектора и толщины стенки дефлектора. Размер огибающей пучка в области дефлектора αdef равен:

где:

- огибающая пучка на входе в байпасную систему,

- огибающая пучка в области дефлектора,

l - длина участка дрейфа.

При размер огибающей пучка у дефлектора много больше, чем размер αin на входе в байпасную систему, , что приведет к уменьшению потерь частиц в стенки дефлектора.

Для частного случая, когда формируют однородные магнитные поля, используют треугольную форму магнитных полюсов градиентных диполей (Фиг. 1). У таких диполей величина градиента силы диполей G1,2 и фокусные расстояния ƒ1,2 равны:

G1,2=qB1,2⋅tgα1,2,

где R1,2 - циклический радиус частицы в полях В12, tgα1,2 - геометрический фактор диполей (Фиг. 1).

где q и Р - заряд и импульс частицы.

Здесь индекс «1» относится к 1 и 4 диполям, индекс «2» - к 2 и 3 диполям.

Для реализации данной системы медленного вывода частиц необходимы диполи с величиной магнитной индукции В1,2≤2T, которая зависит от заряда, массы и энергии частицы. Магнитные полюса диполей выполняют из стандартной электротехнической стали.

Литература

1. И.Б. Иссинский. «Введение в физику ускорителей заряженных частиц», Часть 4, Издательский отдел Объединенного института ядерных исследований, 141980, г. Дубна, Московской обл.

2. А.V. Bondarenko, N.A. Vinokurov. «Beam extraction from a synchrotron through a magnetic shield». Nuclear Inst. and Methods in Physics Research, A 603 (2009), pp. 10-12.

Способ медленного вывода пучка заряженных частиц из магнитной системы кольцевых ускорителей и накопителей частиц, заключающийся в том, что, используя переменные во времени магнитные поля, постепенно отклоняют траекторию пучка частиц от равновесной орбиты и при достижении траекторией пучка апертуры выводного устройства выводят частицы из ускорителя, отличающийся тем, что частицы пучка одновременно дефокусируют и отклоняют от равновесной орбиты нарастающим во времени магнитным полем первого входного диполя, часть частиц отклоненного и дефокусированного пучка, которые достигли апертуры выводного устройства, выводят из ускорителя, а частицы дефокусированного пучка, не попавшие в апертуру выводного устройства, фокусируют полями второго и третьего магнитных диполей и отклоняются обратно к оси, а полями четвертого магнитного диполя не выведенные из ускорителя частицы снова вводятся на равновесную орбиту, магнитные поля всех диполей увеличивают до тех пор, пока все частицы не будут выведены из ускорителя, отклонение, фокусировку и дефокусировку пучка производят полями с градиентом импульса силы G=d(Ft)/dy (где G - градиент импульса силы, F - сила, действующая на частицу, t - время действия силы y - поперечная координата диполя), при этом для экранировки переменного магнитного поля в устройстве вывода его стенки выполняют из тонкого немагнитного металла с толщиной стенки более скин-слоя, а для уменьшения искажений магнитного поля в области частиц пучка, не попавших в апертуру выводного устройства, стенки этого устройства выполнены параллельно силовым линиям магнитного поля.
СПОСОБ МЕДЛЕННОГО ВЫВОДА ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ
СПОСОБ МЕДЛЕННОГО ВЫВОДА ПУЧКА ЗАРЯЖЕННЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 42.
27.07.2014
№216.012.e59d

Индукционный циклический ускоритель электронов

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Заявленный циклический ускоритель электронов включает в себя отклоняющие дипольные магниты, индукционную ускоряющую систему, системы...
Тип: Изобретение
Номер охранного документа: 0002524571
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.f036

Способ получения когерентного излучения

Использование: для получения когерентного излучения. Сущность изобретения заключается в том, что способ получения когерентного излучения, основанный на явлении вынужденных квантовых переходов, включает внешнее воздействие на активную квантовую систему с инверсной населенностью состояний...
Тип: Изобретение
Номер охранного документа: 0002527313
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f883

Дрейфовая камера для работы в вакууме

Изобретение относится к газовым ионизационным многопроволочным координатным детекторам, в частности к дрейфовым камерам с тонкостенными дрейфовыми трубками (строу), предназначенным для работы в вакууме, и может быть использовано в экспериментальной ядерной физике для регистрации и определения...
Тип: Изобретение
Номер охранного документа: 0002529456
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc4e

Способ регистрации частиц детекторами на основе дрейфовых трубок

Изобретение относится к области экспериментальной физики и может быть использовано в установках физики элементарных частиц и в исследованиях, проводимых ядерно-физическими методами в потоках заряженных частиц или рентгеновского излучения. Способ регистрации частиц детекторами на основе...
Тип: Изобретение
Номер охранного документа: 0002530436
Дата охранного документа: 10.10.2014
10.01.2015
№216.013.1dff

Устройство для измерения величины натяжения трубки в «straw»-детекторах

Изобретение предназначено для измерения натяжения трубки в «straw»-детекторах, использующихся в технике физического эксперимента, а также в медицине и научных исследованиях. Устройство содержит высоковольтный генератор переменной частоты, предназначенный для электростатического возбуждения...
Тип: Изобретение
Номер охранного документа: 0002539107
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2535

Способ изготовления переходника для соединения резонатора с кожухом криомодуля коллайдера

Заявленное изобретение относится к способу соединения криомодулей коллайдера, а также коаксиальных труб из разнородных металлов в различных криогенных устройствах, используемых при экстремальных температурных и агрессивных условиях и при больших перепадах давлений. В заявленном способе вначале...
Тип: Изобретение
Номер охранного документа: 0002540978
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a5b

Способ изготовления моно-и олигопоровых мембран

Изобретение относится к изготовлению мембран. Производят облучение движущейся пленки пучком ускоренных ионов через диафрагму с отверстием и последующее травление. Пучок сканируют вдоль линии, проходящей через одну или несколько диафрагм. Скорость движения пучка в плоскости диафрагмы (ν),...
Тип: Изобретение
Номер охранного документа: 0002542300
Дата охранного документа: 20.02.2015
20.06.2015
№216.013.5726

Способ измерения флюенса быстрых нейтронов с помощью полупроводникового детектора

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Технический результат - повышение динамического диапазона измерений флюенса быстрых нейтронов (10-10 см), отсутствие калибровка детектора, возможность...
Тип: Изобретение
Номер охранного документа: 0002553840
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.582a

Способ аксиальной инжекции пучка в компактный циклотрон со сверхвысоким магнитным полем

Изобретение относится к циклотронной техникe. В заявленном способе аксиальной инжекции пучка частиц в компактный циклотрон со сверхвысоким магнитным полем предусмотрен поворот пучка электрическим полем в спиральном инфлекторе (2) из аксиального направления в системе аксиальной инжекции в...
Тип: Изобретение
Номер охранного документа: 0002554111
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a71

Туннельный полевой транзистор на основе графена

Изобретение относится к области наноэлектроники. В туннельном полевом транзисторе с изолированным затвором, содержащем электроды истока и стока, выполненные из монослойного графена и лежащие на изолирующей подложке в одной плоскости, а также затвор, выполненный из проводящего материала и...
Тип: Изобретение
Номер охранного документа: 0002554694
Дата охранного документа: 27.06.2015
Показаны записи 11-20 из 41.
27.07.2014
№216.012.e59d

Индукционный циклический ускоритель электронов

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Заявленный циклический ускоритель электронов включает в себя отклоняющие дипольные магниты, индукционную ускоряющую систему, системы...
Тип: Изобретение
Номер охранного документа: 0002524571
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.f036

Способ получения когерентного излучения

Использование: для получения когерентного излучения. Сущность изобретения заключается в том, что способ получения когерентного излучения, основанный на явлении вынужденных квантовых переходов, включает внешнее воздействие на активную квантовую систему с инверсной населенностью состояний...
Тип: Изобретение
Номер охранного документа: 0002527313
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f883

Дрейфовая камера для работы в вакууме

Изобретение относится к газовым ионизационным многопроволочным координатным детекторам, в частности к дрейфовым камерам с тонкостенными дрейфовыми трубками (строу), предназначенным для работы в вакууме, и может быть использовано в экспериментальной ядерной физике для регистрации и определения...
Тип: Изобретение
Номер охранного документа: 0002529456
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc4e

Способ регистрации частиц детекторами на основе дрейфовых трубок

Изобретение относится к области экспериментальной физики и может быть использовано в установках физики элементарных частиц и в исследованиях, проводимых ядерно-физическими методами в потоках заряженных частиц или рентгеновского излучения. Способ регистрации частиц детекторами на основе...
Тип: Изобретение
Номер охранного документа: 0002530436
Дата охранного документа: 10.10.2014
10.01.2015
№216.013.1dff

Устройство для измерения величины натяжения трубки в «straw»-детекторах

Изобретение предназначено для измерения натяжения трубки в «straw»-детекторах, использующихся в технике физического эксперимента, а также в медицине и научных исследованиях. Устройство содержит высоковольтный генератор переменной частоты, предназначенный для электростатического возбуждения...
Тип: Изобретение
Номер охранного документа: 0002539107
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2535

Способ изготовления переходника для соединения резонатора с кожухом криомодуля коллайдера

Заявленное изобретение относится к способу соединения криомодулей коллайдера, а также коаксиальных труб из разнородных металлов в различных криогенных устройствах, используемых при экстремальных температурных и агрессивных условиях и при больших перепадах давлений. В заявленном способе вначале...
Тип: Изобретение
Номер охранного документа: 0002540978
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a5b

Способ изготовления моно-и олигопоровых мембран

Изобретение относится к изготовлению мембран. Производят облучение движущейся пленки пучком ускоренных ионов через диафрагму с отверстием и последующее травление. Пучок сканируют вдоль линии, проходящей через одну или несколько диафрагм. Скорость движения пучка в плоскости диафрагмы (ν),...
Тип: Изобретение
Номер охранного документа: 0002542300
Дата охранного документа: 20.02.2015
20.06.2015
№216.013.5726

Способ измерения флюенса быстрых нейтронов с помощью полупроводникового детектора

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Технический результат - повышение динамического диапазона измерений флюенса быстрых нейтронов (10-10 см), отсутствие калибровка детектора, возможность...
Тип: Изобретение
Номер охранного документа: 0002553840
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.582a

Способ аксиальной инжекции пучка в компактный циклотрон со сверхвысоким магнитным полем

Изобретение относится к циклотронной техникe. В заявленном способе аксиальной инжекции пучка частиц в компактный циклотрон со сверхвысоким магнитным полем предусмотрен поворот пучка электрическим полем в спиральном инфлекторе (2) из аксиального направления в системе аксиальной инжекции в...
Тип: Изобретение
Номер охранного документа: 0002554111
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a71

Туннельный полевой транзистор на основе графена

Изобретение относится к области наноэлектроники. В туннельном полевом транзисторе с изолированным затвором, содержащем электроды истока и стока, выполненные из монослойного графена и лежащие на изолирующей подложке в одной плоскости, а также затвор, выполненный из проводящего материала и...
Тип: Изобретение
Номер охранного документа: 0002554694
Дата охранного документа: 27.06.2015
+ добавить свой РИД