×
13.02.2018
218.016.20cc

Результат интеллектуальной деятельности: Способ и устройство для калибровки приемной активной фазированной антенной решетки

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенной технике и может использоваться для калибровки приемных активных фазированных антенных решеток (АФАР), применяемых в радиолокационных станциях дальнего обнаружения. На вход каждого приемного модуля подают калибровочный сигнал в виде когерентной последовательности N радиоимпульсов, мощность которых имеет значения одного порядка с мощностью сигналов, поступающих на входы приемных модулей при работе РЛС в штатном режиме. После их усиления, преобразования на промежуточную частоту и аналого-цифрового преобразования с выделением квадратурных составляющих комплексных амплитуд выходных сигналов приемных модулей осуществляют их последовательное N-кратное когерентное суммирование. Формируют комплексные калибровочные коэффициенты путем сравнения комплексной амплитуды накопленного выходного сигнала приемного модуля, принятого за опорный, с комплексными амплитудами накопленных выходных сигналов калибруемых приемных модулей. Выравнивание комплексных коэффициентов передачи приемных модулей для обеспечения равномерного амплитудно-фазового распределения поля на раскрыве АФАР осуществляют путем комплексного умножения комплексных амплитуд выходных сигналов калибруемых приемных модулей на соответствующие комплексные калибровочные коэффициенты. Причем диаграмму направленности АФАР формируют путем весового суммирования комплексной амплитуды выходного сигнала опорного приемного модуля со скорректированными значениями комплексных амплитуд выходных сигналов всех калибруемых приемных модулей. Технический результат заключается в повышении точности калибровки при одновременном упрощении конструкции приемного модуля АФАР. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области антенной техники и может использоваться для калибровки приемных активных фазированных антенных решеток (АФАР), используемых в радиолокационных станциях (РЛС) дальнего обнаружения.

Известен способ калибровки АФАР, состоящий в том, что излучают вспомогательной антенной сигнал, принимают его контролируемой антенной, измеряют мощность сигнала на выходе контролируемой антенны и сравнивают ее с заданным значением [2]. Недостаток этого способа состоит в том, что для обеспечения близкого к плоскому фронта падающей на апертуру контролируемой АФАР электромагнитной волны расстояние R между антеннами должно быть таким, чтобы фазовая неравномерность не превышала некоторого допустимого значения . Так, в случае прямоугольного раскрыва АФАР с размерами 100×30 м, при =10° и длине волны λ=0,6 м расстояние между антеннами должно быть не менее 75 км. Техническая реализация способа связана со значительными организационными и технологическими сложностями. Известен способ калибровки приемной антенны АФАР [3], в котором на вход каждого приемного модуля поочередно подают входной сигнал, измеряют амплитуду и фазу сигнала на выходе приемного модуля, на основе этих измерений формируют калибровочные коэффициенты, которые используют для регулировки комплексного коэффициента передачи каждого приемного модуля, добиваясь их идентичности. Недостаток данного способа состоит в том, что для его реализации требуется высокоточный измерительный прибор, поскольку измерение параметров выходных сигналов каждого приемного модуля производится вне связи с измерениями выходных сигналов других приемных модулей, т.е. измеряются абсолютные значения амплитуды и фазы сигналов на выходах приемных модулей. От этого недостатка свободен способ калибровки АФАР [4], в соответствии с которым один из приемных модулей принимают в качестве опорного, подают калибровочный сигнал на вход каждого приемного модуля, сравнивают по очереди параметры сигналов с выходов всех калибруемых модулей с параметрами выходного сигнала опорного модуля, при этом измеряют разность фаз и амплитуд, формируют на основе измерений калибровочные коэффициенты для каждого приемного модуля, которые используют для регулировки комплексных коэффициентов передачи каждого приемного модуля, добиваясь их идентичности с помощью управляемых аттенюаторов и фазовращателей. Недостаток данного способа состоит в том, что с одной стороны для достижения необходимой точности измерений амплитуды и фазы выходных сигналов необходимо обеспечить значительное превышение мощности калибровочного сигнала над мощностью собственных шумов приемных модулей, с другой стороны - мощность калибровочных сигналов должна находиться в пределах возможных значений мощности принимаемых отраженных от целей сигналов при работе РЛС в штатном режиме.

От этого недостатка свободен способ калибровки N-элементной приемной АФАР РЛС дальнего обнаружения [1], включающий подачу на вход каждого приемного модуля калибровочного сигнала, его предварительное усиление на несущей частоте, частотное преобразование, усиление на промежуточной частоте, аналого-цифровое преобразование с выделением квадратурных составляющих комплексных амплитуд выходных сигналов и формирование корректирующих кодов на основе сравнения модулей и аргументов комплексных амплитуд выходных сигналов каждого из N-1 калибруемых приемных модулей с модулем и аргументом комплексной амплитуды выходного сигнала одного из приемных модулей, принятого за опорный, причем в качестве калибровочного сигнала применяют когерентную последовательность из N радиоимпульсов, мощность которых имеет величину одного порядка с мощностью поступающих на вход каждого приемного модуля отраженных от целей сигналов при работе РЛС в штатном режиме, т.е. при отношении сигнал-шум по мощности ρ<<1. Для обеспечения требуемого отношения сигнал-шум квадратурные составляющие выходных сигналов перед формированием калибровочных коэффициентов подвергают N-кратному последовательному суммированию. При этом отношение сигнал-шум по мощности увеличивается в N раз, что позволяет формировать калибровочные коэффициенты, которые используют для регулирования комплексных коэффициентов передачи калибруемых приемных модулей с целью их выравнивания и обеспечения равномерного амплитудно-фазового распределения поля на апертуре АФАР. Данный способ наиболее близок к предлагаемому и принят в качестве прототипа.

Недостатками прототипа являются низкая точность калибровки, вызванная погрешностями, вносимыми управляемыми фазовращателями и аттенюаторами, и сложность технической реализуемости способа, связанная с необходимостью конструктивных изменений приемных модулей для включения в их состав фазовращателей и аттенюаторов.

Задачей изобретения является повышение точности калибровки приемной АФАР РЛС дальнего обнаружения при одновременном упрощении его технической реализации.

Указанная задача решается за счет того, что выравнивание амплитудно-фазового распределения на апертуре АФАР осуществляют путем умножения комплексных амплитуд выходных сигналов калибруемых приемных модулей на комплексные калибровочные коэффициенты, сформированные на основе сравнения комплексных амплитуд накопленных сигналов с выходов всех калибруемых приемных модулей с комплексной амплитудой накопленного сигнала с выхода опорного приемного модуля. При этом выполняют следующие операции. Формируют калибровочный сигнал в виде последовательности из N когерентных радиоимпульсов, где N - число элементов АФАР. Подают калибровочный сигнал на входы каждого приемного модуля. После предварительного усиления его на несущей частоте, частотного преобразования, основного усиления на промежуточной частоте производят аналого-цифровое преобразование выходного сигнала с выделением его квадратурных составляющих. Квадратурные составляющие выходных сигналов каждого приемного модуля подают на цифровые накапливающие сумматоры, где производят последовательное N-кратное суммирование квадратурных составляющих выходных сигналов. По накопленным значениям квадратурных составляющих выходных сигналов определяют их амплитуды и фазы. Сравнивают амплитуду и фазу накопленного выходного сигнала каждого приемного модуля с амплитудой и фазой одного из приемных модулей, принятого в качестве опорного. На основе сравнения амплитуд и фаз накопленных сигналов с выходов (N-1) калибруемых приемных модулей с амплитудой и фазой накопленного сигнала с выхода опорного приемного модуля формируют комплексные калибровочные коэффициенты, которые используют для калибровки комплексных коэффициентов передачи всех (N-1) калибруемых приемных модулей путем умножения комплексных амплитуд выходных сигналов калибруемых приемных модулей на соответствующие комплексные калибровочные коэффициенты. Сигнал с выхода опорного приемного модуля и сигналы с выходов калибруемых приемных модулей подают на систему цифрового формирования диаграммы направленности АФАР [5, с. 17-31].

Техническим результатом изобретения является повышение точности калибровки приемной АФАР при одновременном упрощении ее технической реализации за счет исключения из состава всех приемных модулей управляемых аттенюаторов и фазовращателей и применения вместо них цифровых комплексных перемножителей.

Сущность изобретения иллюстрируется следующими фигурами: на фиг. 1 приведена структурная схема устройства для калибровки приемной АФАР; на фиг. 2 - структурная схема приемного модуля АФАР; на фиг. 3 - структурная схема блока калибровки; на фиг. 4 - структурная схема генератора калибровочных сигналов.

Устройство, реализующее предлагаемый способ калибровки АФАР, содержит (фиг. 1) N калибруемых приемных модулей 1 с излучателями 2, выходы квадратурных составляющих комплексных амплитуд выходных сигналов каждого приемного модуля и (i∈0, N-1) соединены с соответствующими входами блока калибровки 3, выходы калибровочных сигналов «КС» с номерами 0, 1, …i… (N-1) соединены с калибровочными входами соответствующих приемных модулей 1, а выходы квадратурных составляющих комплексных амплитуд выходных сигналов калибруемых приемных модулей , , …, , , …, , , а также выходы квадратурных составляющих комплексной амплитуды выходного сигнала опорного приемного модуля и подключены к соответствующим входам системы 4 цифрового формирования диаграммы направленности АФАР. Каждый приемный модуль АФАР (фиг. 2) содержит входной малошумящий усилитель 5, смеситель - 6, усилитель промежуточной частоты - 7, аналого-цифровой квадратурный преобразователь - 8. Дополнительно в схему каждого приемного модуля включен коммутатор - 9, первый вход которого соединен с излучателем 2, второй вход соединен с i-м выходом (i - номер приемного модуля, i∈0, Ν-1) блока калибровки - 3, управляющий вход коммутатора 9 соединен с пультом управления РЛС для подачи команды «ПУСК», а выход соединен с входом малошумящего усилителя 5, выход которого подключен к первому входу смесителя 6, на второй вход которого подано напряжение гетеродина Uгет, а выход подключен к входу усилителя промежуточной частоты 7, выход которого подключен к входу аналого-цифрового квадратурного преобразователя 8. Квадратурные выходы аналого-цифрового квадратурного преобразователя 8 , , (i∈0…N-1) являются выходами каждого приемного модуля и соединены с соответствующими входами блока калибровки 3. Блок калибровки 3 (фиг. 3) содержит генератор калибровочных сигналов - 10, выход калибровочных сигналов «КС» которого соединен с входом СВЧ делителя мощности - 11, выходы 0, …, i, …, (N-1) которого подключены к i калибровочным входам коммутатора 9 соответствующих приемных модулей (фиг. 2). Выход тактовых импульсов «ТИ» генератора калибровочных сигналов 10 подключен к входам синхронизации накапливающих сумматоров - 12i, 13i, (i∈0, N-1) квадратурных составляющих комплексных амплитуд выходных сигналов приемных модулей, информационные входы указанных накапливающих сумматоров соединены с соответствующими выходами квадратурных составляющих комплексных амплитуд выходных сигналов приемных модулей и (i∈0, N-1), а выходы накапливающих сумматоров подключены к входам соответствующих вычислителей модуля - 14i и аргумента - 15i (i∈0, N-1). Выходы вычислителей модуля 14i и аргумента 15i подключены к входам вычислителя комплексных коэффициентов калибровки - 16, выходы действительной части и мнимой части (i∈1, N-1) комплексных коэффициентов калибровки (i∈1,N-l) которого подключены к первым входам комплексных перемножителей - 17i (i∈1, N-1), а ко вторым входам указанных комплексных перемножителей подсоединены выходы соответствующих калибруемых приемных модулей от 1-го до (N-l)-гo. Выходы всех комплексных перемножителей 17i являются выходами калиброванных амплитуд выходных сигналов приемных модулей , (i∈1, N-1) и соединены с входами системы цифрового формирования диаграммы направленности 4 АФАР (фиг. 1). Генератор калибровочных сигналов 10 (фиг. 4) содержит кварцевый генератор - 18, выход которого подключен к входу гетеродина - 19, выход которого является выходом напряжения гетеродина Uгет, кроме того, выход кварцевого генератора 18 подключен к входу делителя частоты - 20 и к первому входу схемы «И» - 21, второй вход которой соединен с выходом триггера - 22, а выход соединен с входом генератора тактовых импульсов - 23, выход которого является выходом тактовых импульсов («ТИ») генератора калибровочных сигналов 10 и, кроме того, подключен к входу генератора модулирующих импульсов - 24 и к входу реверсивного счетчика - 25, выход которого подключен к первому входу триггера 22, второй вход которого является входом «ПУСК» генератора калибровочных сигналов 10, выход генератора модулирующих импульсов 24 подключен ко второму входу модулятора - 26, выход которого является выходом калибровочных сигналов «КС» генератора 10.

Калибровку приемных модулей фазированных антенных решеток осуществляют следующим образом. Для начала работы на вход генератора калибровочных сигналов 10 подают сигнал «ПУСК» с пульта оператора РЛС. При этом триггер 22 (фиг. 4) переводится в состояние «1», открывается схема «И» 21 (фиг. 4), коммутаторы 9 всех приемных модулей (фиг. 2) подключают входы малошумящих усилителей 5 всех приемных модулей к выходам калибровочных сигналов «КС» генератора калибровочных сигналов 10 (фиг. 3). Кварцевый генератор 18 (фиг. 4) вырабатывает гармоническое напряжение с частотой ƒкв.г, которое в делителе частоты 20 (фиг. 4) после ограничения по амплитуде преобразуется в импульсное напряжение типа «меандр» той же частоты, на выходе делителя частоты 20 формируется последовательность импульсов, частота повторения которых FТИкв.г/n, где n - коэффициент деления частоты. Эти импульсы проходят через открытую схему «И» 21 (фиг. 4) и запускают генератор тактовых импульсов 23, где они преобразуются в прямоугольные импульсы заданной длительности τТИ, которые поступают на выход «ТИ» генератора калибровочных сигналов 10 (фиг. 3) и используются для синхронизации накапливающих сумматоров 11i, 12i (фиг. 3). Кроме того, импульсы с выхода генератора тактовых импульсов 23 (фиг. 4) поступают на вход генератора модулирующих импульсов 24, где они преобразуются в прямоугольные импульсы заданной длительности τКС, которые открывают нормально закрытый модулятор 26 (фиг. 4), преобразующий непрерывные колебания кварцевого генератора 18 частоты ƒкв.г в когерентную последовательность из N радиоимпульсов калибровочного сигнала длительностью τкс с частотой повторения FПкв.г/n. Когерентность пачки N калибровочных импульсов обеспечивается тем, что модулирующие импульсы формируются из гармонических колебаний кварцевого генератора 18 после деления их частоты в n раз делителем частоты 20. Кроме того, тактовые импульсы с выхода генератора тактовых импульсов 23 (фиг. 4) поступают на вход реверсивного счетчика импульсов 25, который после поступления на него N тактовых импульсов обнуляется и формирует сигнал, переводящий триггер 22 в нулевое состояние, в результате чего схема «И» 21 закрывается и прекращается формирование тактовых импульсов «ТИ» и импульсов калибровочного сигнала «КС». Сформированные таким образом N когерентных радиоимпульсов через делитель мощности 11 (фиг. 3) и через коммутаторы 9 (фиг. 2) поступают на входы всех приемных модулей, где предварительно усиливаются малошумящим усилителем 5, преобразуются на промежуточную частоту смесителем 6, на второй вход которого подано напряжение гетеродина UГЕТ с соответствующего выхода генератора калибровочных сигналов 10. Когерентность импульсов промежуточной частоты обеспечивается тем, что напряжение гетеродина UГЕТ в блоке генератора калибровочных сигналов 10 формируется из колебаний кварцевого генератора 18. После усиления усилителем промежуточной частоты 7 (фиг. 2) эти импульсы преобразуются в цифровую форму аналого-цифровым квадратурным преобразователем 8 (фиг. 2) с выделением квадратурных составляющих и комплексной амплитуды выходного сигнала i-го приемного модуля (i∈0, N-1), которые поступают на соответствующие накапливающие сумматоры 11i, 12i (фиг. 3), на выходе которых в результате N-кратного когерентного суммирования формируются суммарные комплексные сигналы с действительной и мнимой частями. Результаты суммирования и поступают на соответствующие вычислители модуля 14i и аргумента 15i (фиг. 3).

Результаты вычислений модуля комплексной суммарной амплитуды и аргумента φΣί поступают на входы вычислителя комплексных калибровочных коэффициентов 16 (фиг. 3), которые для каждого калибруемого приемного модуля определяются как отношение комплексной амплитуды накопленного выходного сигнала нулевого (опорного) приемного модуля к комплексной амплитуде накопленного выходного сигнала i-гo калибруемого приемного модуля .

Действительную и мнимую части комплексного калибровочного коэффициента каждого калибруемого приемного модуля с номерами i∈(1, N-1) подают на первые входы соответствующих комплексных перемножителей 17i (фиг. 3), на вторые входы которых подают выходные сигналы соответствующих калибруемых приемных модулей.

В результате чего на выходах перемножителей 17i получают калиброванные значения комплексных амплитуд выходных сигналов калибруемых приемных модулей , квадратурные составляющие которых в точности равны квадратурным составляющим комплексной амплитуды выходного сигнала нулевого (опорного) приемного модуля, т.е. выходные сигналы всех приемных модулей оказываются одинаковыми как по амплитуде, так и по фазе. Непосредственно с выхода нулевого (опорного) модуля и с выходов соответствующих комплексных перемножителей 17i (фиг. 3) на вход схемы цифрового формирования диаграммы направленности 4 (фиг. 1) поступают равноамплитудные и синфазные сигналы, путем взвешенного суммирования которых формируется диаграмма направленности (ДН) АФАР [5].

Данный способ калибровки приемных модулей АФАР позволяет повысить точность калибровки приемной АФАР при одновременном существенном упрощении его технической реализации за счет исключения из состава всех приемных модулей управляемых аттенюаторов и фазовращателей.

Источники информации

1. Шишов Ю.А., Ворошилов В.А., Ясенков Т.В. Особенности калибровки приемных антенных решеток РЛС дальнего обнаружения. - Труды XXVIII Всероссийского симпозиума «Радиолокационное исследование природных сред» // Том 2, СПб., ВКА имени А.Ф. Можайского, 2013 г., с. 127-135 (прототип).

2. Бубнов Г.Г. и др. Коммутационный способ измерения характеристик фазированных антенных решеток. - М.: Радио и связь, 1989 г. - 120 с.

3. Патент РФ №2147753, G01S 7/40. Способ калибровки антенной решетки / Б.Г. Йоханиссон, У. Фарссен. - №97100131/09; Заявлено 01.06.1995. Опубликовано 20.04.2000.

4. Патент РФ №2467346, G01S 7/40. Способ калибровки активной фазированной антенной решетки / В.В. Задорожный, А.Ю. Ларин. - №2011127436/08; Заявлено 04.07.2011. Опубликовано 20.11.2012.

5. Григорьев Л.Н. Цифровое формирование диаграммы направленности в фазированных антенных решетках. - М.: Радиотехника, 2010 г. - 144 с.


Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Источник поступления информации: Роспатент

Показаны записи 31-40 из 632.
27.06.2014
№216.012.d6e6

Вентиль

Изобретение относится к ручным вентилям, предназначенным для использования в пневмогидравлической системе наземного агрегата гидропитания, применяемого при проверках функционирования рулевых машин перед стартом ракеты. В корпусе вентиля размещен затвор с запрессованным уплотнителем, опирающимся...
Тип: Изобретение
Номер охранного документа: 0002520792
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d6ec

Узел пары заслонка и седло регулятора расхода горячего газа

Изобретение относится к области машиностроения, а именно к регуляторам расхода горячего газа, работающим на продуктах сгорания ракетных топлив и обеспечивающим управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Узел пары заслонка и седло регулятора расхода горячего газа...
Тип: Изобретение
Номер охранного документа: 0002520798
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d965

Дренажно-предохранительный клапан бака окислителя

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК). Дренажно-предохранительный клапан бака окислителя включает в себя основной и вспомогательный клапаны, соединенные герметичными трубопроводами между собой, с предохраняемой...
Тип: Изобретение
Номер охранного документа: 0002521431
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dce7

Устройство для фиксации отделяемых в процессе эксплуатации частей изделия от корпуса

Изобретение относится к области машиностроения и может быть использовано при разработке изделий с разделяемыми в процессе работы элементами. Устройство содержит цилиндрический корпус, установленную в нем обойму, выполненную в виде полого цилиндра с торцовым фланцем, контактирующим с корпусом...
Тип: Изобретение
Номер охранного документа: 0002522329
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de20

Вращающийся обтекатель антенн на самолете

Изобретение относится к элементам конструкции антенн самолетов дальнего радиолокационного обнаружения. Вращающийся обтекатель антенн, выполненный в виде кессона и предназначенный для установки на фюзеляже за крылом посредством пилонов, содержит центральный узел - силовой куб, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002522650
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de91

Бак топливный космического аппарата для хранения и подачи жидких компонентов

Изобретение относится к пневмогидравлической системе подачи компонентов топлива реактивной двигательной установки космического аппарата. Топливный бак содержит герметичный корпус, выполненный из двух полусфер с входным и выходным штуцерами и элементами внешнего крепления. Внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002522763
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e2

Лазерный целеуказатель

Изобретение относится к аппаратуре для лазерного целеуказания и дальнометрии. Лазерный целеуказатель содержит канал лазерного целеуказания, электронную аппаратуру управления мощностью (энергией) лазера канала лазерного целеуказания и канал лазерного дальнометрирования. Каналы лазерного...
Тип: Изобретение
Номер охранного документа: 0002523612
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fff2

Трехфазный инвертор напряжения с трансформаторным выходом

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении трехфазных инверторов в системах как основного, так и резервного электропитания автономных объектов, где уровень напряжения первичного источника требует повышения его трансформаторным...
Тип: Изобретение
Номер охранного документа: 0002531378
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.018c

Способ повышения эффективности наведения на подводную цель корректируемого подводного снаряда противолодочного боеприпаса и устройство для его реализации

Изобретение относится военной технике и может быть использовано в противолодочных боеприпасах. Противолодочный боеприпас (ПБ) содержит корпус, систему запуска и разделения, тормозной отсек с парашютом и поплавком с невозвратным клапаном, отделяемый корректируемый подводный снаряд (КПС) с...
Тип: Изобретение
Номер охранного документа: 0002531794
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.0378

Раскрываемый руль ракеты

Изобретение относится к ракетной технике и касается складываемых аэродинамических поверхностей и механизмов их раскрытия. Раскрываемый руль ракеты состоит из вала, установленного в корпусе ракеты с возможностью поворота, аэродинамической поверхности, жестко фиксируемой в раскрытом положении и...
Тип: Изобретение
Номер охранного документа: 0002532286
Дата охранного документа: 10.11.2014
Показаны записи 31-40 из 355.
27.06.2014
№216.012.d6e6

Вентиль

Изобретение относится к ручным вентилям, предназначенным для использования в пневмогидравлической системе наземного агрегата гидропитания, применяемого при проверках функционирования рулевых машин перед стартом ракеты. В корпусе вентиля размещен затвор с запрессованным уплотнителем, опирающимся...
Тип: Изобретение
Номер охранного документа: 0002520792
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d6ec

Узел пары заслонка и седло регулятора расхода горячего газа

Изобретение относится к области машиностроения, а именно к регуляторам расхода горячего газа, работающим на продуктах сгорания ракетных топлив и обеспечивающим управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Узел пары заслонка и седло регулятора расхода горячего газа...
Тип: Изобретение
Номер охранного документа: 0002520798
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d965

Дренажно-предохранительный клапан бака окислителя

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК). Дренажно-предохранительный клапан бака окислителя включает в себя основной и вспомогательный клапаны, соединенные герметичными трубопроводами между собой, с предохраняемой...
Тип: Изобретение
Номер охранного документа: 0002521431
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dce7

Устройство для фиксации отделяемых в процессе эксплуатации частей изделия от корпуса

Изобретение относится к области машиностроения и может быть использовано при разработке изделий с разделяемыми в процессе работы элементами. Устройство содержит цилиндрический корпус, установленную в нем обойму, выполненную в виде полого цилиндра с торцовым фланцем, контактирующим с корпусом...
Тип: Изобретение
Номер охранного документа: 0002522329
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de20

Вращающийся обтекатель антенн на самолете

Изобретение относится к элементам конструкции антенн самолетов дальнего радиолокационного обнаружения. Вращающийся обтекатель антенн, выполненный в виде кессона и предназначенный для установки на фюзеляже за крылом посредством пилонов, содержит центральный узел - силовой куб, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002522650
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de91

Бак топливный космического аппарата для хранения и подачи жидких компонентов

Изобретение относится к пневмогидравлической системе подачи компонентов топлива реактивной двигательной установки космического аппарата. Топливный бак содержит герметичный корпус, выполненный из двух полусфер с входным и выходным штуцерами и элементами внешнего крепления. Внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002522763
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e2

Лазерный целеуказатель

Изобретение относится к аппаратуре для лазерного целеуказания и дальнометрии. Лазерный целеуказатель содержит канал лазерного целеуказания, электронную аппаратуру управления мощностью (энергией) лазера канала лазерного целеуказания и канал лазерного дальнометрирования. Каналы лазерного...
Тип: Изобретение
Номер охранного документа: 0002523612
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fff2

Трехфазный инвертор напряжения с трансформаторным выходом

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении трехфазных инверторов в системах как основного, так и резервного электропитания автономных объектов, где уровень напряжения первичного источника требует повышения его трансформаторным...
Тип: Изобретение
Номер охранного документа: 0002531378
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00e9

Кольцевое движительное устройство

Изобретение относится к области судостроения и может быть использовано в конструкциях винтовых движителей и устройствах активного управления плавательными средствами. Кольцевое движительное устройство включает электродвигатель, кольцевую насадку и кольцевой ротор, которые образуют водопроточный...
Тип: Изобретение
Номер охранного документа: 0002531631
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.018c

Способ повышения эффективности наведения на подводную цель корректируемого подводного снаряда противолодочного боеприпаса и устройство для его реализации

Изобретение относится военной технике и может быть использовано в противолодочных боеприпасах. Противолодочный боеприпас (ПБ) содержит корпус, систему запуска и разделения, тормозной отсек с парашютом и поплавком с невозвратным клапаном, отделяемый корректируемый подводный снаряд (КПС) с...
Тип: Изобретение
Номер охранного документа: 0002531794
Дата охранного документа: 27.10.2014
+ добавить свой РИД