×
13.02.2018
218.016.20c2

Результат интеллектуальной деятельности: МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов. Модуль проходной фазированной антенной решетки (ФАР) содержит основание модуля в виде печатной платы и элементы ФАР, соединенные с основанием модуля. На основании модуля в пространстве между элементами ФАР размещены драйверы системы управления лучом (СУЛ), выполненные в виде интегральных микросхем и электронных компонентов. При этом печатная плата элемента ФАР может содержать вырез между контактными площадками, в котором размещены микросхемы драйверов СУЛ и электронные компоненты. Микросхема драйвера СУЛ обеспечивает управление одним или несколькими фазовращателями элементов ФАР путем подачи на элемент управления каждого фазовращателя двух разнополярных управляющих импульсов напряжения с регулируемыми длительностями и интервалом между ними, а также контроль установленных управляемых фазовых сдвигов и контроль целостности электрических цепей и фазовращателей элементов ФАР. Технический результат состоит в обеспечении возможности управления фазовращателями элементов ФАР непосредственно в модуле проходной ФАР при шаге расположения элементов ФАР, позволяющем обеспечить однолучевое электрическое сканирование с максимальным углом отклонения луча от нормали к раскрыву ФАР не менее 45°. Применение таких модулей при построении ФАР с широкоугольным электрическим сканированием луча позволяет существенно уменьшить габариты антенной системы, включающей ФАР и систему управления лучом, значительно упростить коммутацию цепей управления фазовращателями элементов ФАР за счет исключения длинных проводников, соединяющих фазовращатели с системой управления лучом, и в результате повысить технологичность сборки и надежность антенной системы в целом, а также увеличить коэффициент усиления ФАР за счет снижения погрешности установки требуемых фазовых сдвигов в фазовращателях. Использование модулей проходной ФАР в антенных системах с количеством элементов 10000 и более дает возможность сохранить низкое вносимое элементом ФАР ослабление за счет отсутствия необходимости увеличения его длины при большом количестве элементов в модуле ФАР и, таким образом, сохранить высокий коэффициент усиления ФАР. 8 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов, в частности к конструкциям фазированных антенных решеток (ФАР), и может быть использовано в радиолокационных системах с широкоугольным электрическим сканированием луча.

Известна конструкция модульной фазированной антенной решетки с ферритовыми фазовращателями, описанная в статье [1]. Фазированная антенная решетка содержит параллельно расположенные плоскую апертурную плату и плоскую плату питания и управления, поверх которой размещена плата согласующих переходов. Элементы ФАР расположены между апертурной платой и платой питания и управления и закреплены в отверстиях этих плат. На корпусах элементов ФАР размещаются драйверы управления фазовращателями, соединяемые с платой питания и управления.

Модульная ФАР [1] обладает следующими недостатками:

1. Недостаточная жесткость конструкции в направлении, перпендикулярном раскрыву ФАР, при большой площади раскрыва, что приводит к смещению элементов ФАР в продольном направлении. Вследствие смещения элементов ФАР в продольном направлении относительно их расчетных положений возникают ошибки при формировании требуемого фазового распределения в раскрыве ФАР, в результате чего снижается коэффициент усиления ФАР.

2. Недостаточная надежность, являющаяся следствием соединения расположенных на корпусе элементов ФАР драйверов управления фазовращателями с платой питания и управления.

3. Низкая технологичность, вызванная сложностью одновременной установки элементов ФАР в отверстия параллельно расположенных апертурной платы и платы питания и управления и соединения расположенных на корпусах элементов ФАР драйверов управления фазовращателями с платой питания и управления.

Известен модуль ФАР, описанный в статье [2]. Здесь описан унифицированный гибкий антенный модуль ФАР. Он содержит основание модуля с печатной платой с проложенными линиями разводки сигналов управления и питающих напряжений. Для минимизации числа линий разводки элемент управления фазовращателем интегрирован с последним в единую сборку. Элементы ФАР присоединены к гибкой печатной плате с применением пайки.

Гибкому антенному модулю ФАР присущ ряд недостатков:

1. Конструкция гибкого антенного модуля не содержит устройств, фиксирующих положение элементов ФАР на основании модуля. Следствием этого могут быть погрешности установки элементов ФАР в раскрыве антенной решетки и ухудшение ее электрических характеристик.

2. Гибкий антенный модуль характеризуется низкой стойкостью к механическим воздействиям. В применениях, отличных от [2], повышенная гибкость модуля неприемлема.

3. Элементы ФАР [2] имеют большой диаметр (более длины волны) и, следовательно, шаг антенной решетки, существенно ограничивающий сектор сканирования луча при размещении их в периодической антенной решетке. Широкоугольное электрическое сканирование луча можно обеспечить только при построении на базе гибкого антенного модуля неэквидистантной фазированной антенной решетки, а такие антенные решетки имеют по сравнению с периодическими антенными решетками более низкий коэффициент направленного действия и, соответственно, более низкий коэффициент усиления.

Частично свободен от указанных недостатков модуль проходной фазированной антенной решетки [3], принятый за прототип. Модуль проходной ФАР содержит основание модуля и элементы ФАР. Основание модуля проходной ФАР выполнено в виде жесткой пластины, содержащей печатные проводники с контактными площадками и штыри, установленные вдоль пластины по обе ее стороны, между которыми на пластине размещены элементы ФАР так, что утолщения их волноводов непосредственно примыкают к боковым ребрам пластины, их корпусы установлены на пластине и соединены с ней клеевым соединением, а контактные площадки печатной платы элемента ФАР соединены с выводами обмотки намагничивания и припаяны к контактным площадкам основания модуля проходной ФАР.

Модуль проходной ФАР, принятый за прототип, обладает рядом недостатков:

1. Конструкция модуля проходной ФАР [3] не содержит узлов управления фазовращателями элементов ФАР (драйверов), что приводит к необходимости применения большого числа проводников и коммутационных элементов в антенной системе.

2. При большом количестве элементов ФАР в модуле существенно возрастают длины проводников, соединяющих узлы управления фазовращателями элементов ФАР и фазовращатели элементов ФАР, что может увеличить погрешность установки требуемых фазовых сдвигов, в результате чего снизится коэффициент усиления ФАР.

3. При значительном количестве элементов ФАР в модуле требуется размещение на основании модуля соответствующего числа проводников, соединяющих узлы управления и фазовращатели элементов ФАР. При росте количества размещаемых на основании модуля проводников и сохранении прежней толщины основания модуля с целью обеспечения требуемого шага расположения элементов в ФАР, построенной на базе этих модулей, возникает необходимость увеличения ширины основания модуля. Это в свою очередь ведет к увеличению длины элемента ФАР, размещаемого на основании модуля, что вызывает рост вносимого им ослабления и, соответственно, снижение коэффициента усиления антенной системы, построенной на базе таких модулей.

Техническим результатом предлагаемого изобретения является устранение недостатков, присущих прототипу, а именно: обеспечение возможности управления фазовращателями элементов ФАР непосредственно в модуле проходной ФАР при шаге расположения элементов ФАР, обеспечивающем широкоугольное электрическое сканирование луча с максимальным углом отклонения от нормали к раскрыву ФАР не менее 45°.

Для получения технического результата в модуле проходной фазированной антенной решетки, содержащем основание модуля в виде печатной платы, элементы ФАР, соединенные с основанием модуля, каждый из которых содержит корпус, приемный и апертурный излучатели, фазовращатель с выводами, соединенными с контактными площадками печатной платы элемента ФАР, а также ограничитель осевого смещения, при этом основание модуля выполнено в виде пластины, содержащей печатные проводники с контактными площадками и конструктивные элементы, определяющие шаг размещения элементов ФАР, а корпусы элементов ФАР установлены на пластине по крайней мере с одной из ее сторон и соединены с ней, причем контактные площадки печатной платы элемента ФАР соединены с контактными площадками основания модуля ФАР, согласно изобретению на основании модуля в пространстве между элементами ФАР размещены драйверы системы управления лучом (СУЛ), выполненные в виде интегральных микросхем и электронных компонентов, причем минимальное расстояние между осями соседних элементов ФАР не превышает величины L=d+t, где d - поперечный размер корпуса элемента ФАР в области расположения конструктивных элементов, определяющих шаг размещения элементов ФАР, a t - поперечный размер конструктивного элемента, определяющего шаг размещения элементов ФАР, в области касания корпуса элемента ФАР, при этом драйвер СУЛ обеспечивает управление одним или несколькими фазовращателями элементов ФАР путем подачи на каждый фазовращатель двух разнополярных управляющих импульсов напряжения с регулируемыми длительностями и интервалом между ними, а также контроль установленных управляемых фазовых сдвигов и контроль целостности электрических цепей и фазовращателей элементов ФАР, причем напряжение управляющих импульсов определяется напряжением, поданным на расположенную на основании модуля шину питания, а длительности управляющих импульсов передаются по размещенной на основании модуля шине передачи данных, по которой также передаются групповые команды, обеспечивающие одновременное переключение фазовых состояний элементов ФАР в модуле проходной фазированной антенной решетки.

В частном случае конструктивные элементы, определяющие шаг размещения элементов ФАР, могут быть выполнены в виде установленных вдоль основания модуля по обе его стороны штырей, между которыми размещены элементы ФАР.

В частном случае ограничители осевого смещения элементов ФАР могут быть выполнены в виде примыкающих непосредственно к боковому ребру основания модуля утолщений их корпусов или излучателей.

В частном случае микросхема драйвера СУЛ может размещаться в углублении основания модуля.

В частном случае микросхема драйвера СУЛ может быть выполнена бескорпусной.

В частном случае печатная плата элемента ФАР может содержать вырез между контактными площадками, в котором размещаются электронные компоненты и микросхема драйвера СУЛ.

В частном случае электронные компоненты драйверов СУЛ могут быть размещены на обеих сторонах основания модуля.

В частном случае элемент ФАР может содержать волноводный ферритовый фазовращатель.

В частном случае элемент ФАР может содержать приемный и апертурный волноводно-диэлектрические излучатели.

Предлагаемое изобретение поясняется чертежами. На фиг. 1 показан объемный вид модуля проходной ФАР. На фиг. 2 приведен объемный вид модуля проходной ФАР без элементов ФАР. На фиг. 3 показан вид модуля проходной ФАР со стороны печатной платы элемента ФАР. На фиг. 4 представлено поперечное сечение модуля проходной ФАР в месте расположения конструктивных элементов, определяющих шаг размещения элементов ФАР (сечение АА на фиг. 3). На фиг. 5 показан вид модуля проходной ФАР со стороны основания модуля.

На фиг. 1 - 5 обозначено: 1 - основание модуля; 2, 3 - контактные площадки основания модуля проходной ФАР; 4 - микросхема драйвера СУЛ; 5, 6 - электронные компоненты; 7 - конструктивный элемент, определяющий шаг размещения элементов ФАР; 8 - элемент ФАР; 9 - печатная плата элемента ФАР; 10, 11 - контактные площадки печатной платы элемента ФАР; 12 - вырез в контактной плате элемента ФАР; 13 - ограничитель осевого смещения элемента ФАР; 14 - приемный излучатель; 15 - апертурный излучатель, 16 - боковое ребро основания модуля.

Модуль проходной фазированной антенной решетки работает следующим образом.

В режиме передачи электромагнитная волна, поляризованная по кругу и излучаемая облучателем фазированной антенной решетки, состоящей из предлагаемых модулей проходной ФАР (на рисунках не показана), принимается приемным излучателем 14, выполненным, например, в виде волноводно-диэлектрического излучателя, каждого элемента ФАР 8 и поступает на вход фазовращателя элемента ФАР. Проходя через фазовращатель, электромагнитная волна испытывает изменение фазы на величину Δϕ. С выхода фазовращателя электромагнитная волна поступает на вход апертурного излучателя 15, выполненного, например, в виде волноводно-диэлектрического излучателя, и излучается им в свободное пространство.

В режиме приема из свободного пространства на апертурный излучатель 15 каждого элемента ФАР 8 падает поляризованная по кругу электромагнитная волна с противоположным направлением вращения и принимается им. Затем электромагнитная волна проходит через фазовращатель, получает такое же, как и в режиме передачи, изменение фазы Δϕ и излучается приемным излучателем 14 в направлении облучателя ФАР.

Изменение фазы излучаемой элементом ФАР 8 электромагнитной волны в интервале Δϕ=0…2π осуществляется посредством фазовращателя, например волноводного ферритового фазовращателя фарадеевского типа, путем подачи на управляющий элемент фазовращателя, например катушку продольного намагничивания ферритового стержня, двух разнополярных импульсов напряжения с регулируемыми длительностями и интервалом между ними. Управляющие импульсы поступают на выводы фазовращателя через контактные площадки 10 и 11 печатной платы элемента ФАР 9.

На основании модуля 1 размещены драйверы СУЛ, выполненные в виде интегральных микросхем драйверов СУЛ 4 и электронных компонентов 5 и 6. Микросхемы драйверов СУЛ 4 и электронные компоненты 5 и 6 располагаются на основании модуля 1 в пространстве между элементами ФАР 8. Минимальное расстояние между осями соседних элементов ФАР не превышает величины L=d+t, где d - поперечный размер корпуса элемента ФАР в области расположения конструктивных элементов 7, определяющих шаг размещения элементов ФАР, a t - поперечный размер конструктивного элемента 7, определяющего шаг размещения элементов ФАР, в области касания корпуса элемента ФАР 8. С целью уменьшения минимального расстояния между элементами ФАР 8 микросхема драйвера СУЛ 4 может быть размещена в углублении основания модуля. В частном случае микросхема драйвера СУЛ 4 может быть выполнена бескорпусной, что также позволит уменьшить минимальное расстояние между элементами ФАР 8. С целью уменьшения минимального расстояния между элементами ФАР 8 печатная плата элемента ФАР 9 может содержать вырез 12 между контактными площадками 10 и 11, в котором размещаются электронные компоненты драйвера СУЛ 5 и микросхема драйвера СУЛ 4.

Каждая микросхема драйвера СУЛ 4 обеспечивает управление одним или несколькими фазовращателями элементов ФАР, например, путем подачи на контактные площадки основания модуля проходной ФАР 2 и 3, соединенные соответственно с контактными площадками 10 и 11 печатной платы элемента ФАР 9, двух разнополярных управляющих импульсов напряжения с регулируемыми длительностями и интервалом между ними. Микросхема драйвера СУЛ 4 также производит контроль установленных управляемых фазовых сдвигов и контроль целостности электрических цепей и фазовращателей элементов ФАР 8, например обмоток намагничивания и магнитных систем волноводных ферритовых фазовращателей. Напряжение управляющих импульсов определяется напряжением, поданным на расположенную на основании модуля шину питания. Длительности управляющих импульсов передаются по расположенной на основании модуля шине передачи данных, по которой также передаются групповые команды, обеспечивающие одновременное переключение фазовых состояний элементов ФАР в модуле проходной фазированной антенной решетки.

Элемент ФАР 8 устанавливается на основание модуля 1 и жестко соединяется с ним, например, с применением клея. Контактные площадки 10 и 11 печатной платы элемента ФАР 9 соединяются соответственно с контактными площадками основания модуля проходной ФАР 2 и 3 посредством пайки. Конструктивные элементы 7, определяющие шаг размещения элементов ФАР, могут быть выполнены, например, в виде установленных вдоль основания модуля 1 по обе его стороны штырей и позволяют повысить точность позиционирования элементов ФАР 8 в продольном направлении основания модуля. Ограничитель осевого смещения элемента ФАР 13, выполненный, например, в виде примыкающего непосредственно к боковому ребру основания модуля 16 утолщения корпуса элемента ФАР или утолщения апертурного или приемного излучателя, позволяет повысить точность позиционирования элемента ФАР в поперечном направлении основания модуля. С целью уменьшения расстояния между элементами ФАР 8 электронные компоненты 6 драйверов СУЛ могут быть размещены на основании модуля 1 на стороне, не содержащей элементов ФАР 8 (фиг. 3, фиг. 4 и фиг. 5).

Предлагаемый модуль проходной ФАР конструктивно прост, технологичен, отличается простотой изготовления отдельных деталей и сборки, характеризуется низкой трудоемкостью и невысокой стоимостью. Для его создания в условиях серийного производства нет необходимости разрабатывать новые материалы и использовать дорогостоящие технологические процессы, достаточно использовать нормализованные серийно выпускаемые материалы, клеи и освоенные технологические процессы.

Эффективность предложенного технического решения проверена экспериментально на макетах модулей проходных фазированных антенных решеток миллиметрового диапазона длин волн в полосе частот прямоугольного волновода сечением 7,2×3,4 мм2. Макет модуля проходной ФАР содержит элементы ФАР с поперечными размерами не более 0,5λ, где λ - длина волны в свободном пространстве на средней частоте рабочего диапазона. Использование предлагаемого изобретения позволяет существенно улучшить технические характеристики фазированных антенных решеток. При указанном поперечном размере элементы ФАР в модуле проходной ФАР могут располагаться на расстояниях, обеспечивающих двумерное широкоугольное электрическое сканирование луча с отклонением его от нормали к раскрыву на угол до 45°.

Данное техническое решение применимо при создании как малоэлементных, так и крупноапертурных ФАР. В зависимости от конкретного размера ФАР изменяется только число модулей ФАР и количество элементов ФАР в каждом из них.

Модуль проходной фазированной антенной решетки может эффективно применяться, например, при построении антенных систем радиолокационных комплексов, как стационарных, так и мобильных, наземного, морского и воздушного базирования, в том числе функционирующих в условиях повышенных механических воздействий.

Отмеченное выше подтверждает соответствие указанного технического решения критерию "промышленная применимость".

Технический результат состоит в обеспечении возможности управления фазовращателями элементов ФАР непосредственно в модуле проходной ФАР при шаге расположения элементов ФАР, позволяющем обеспечить однолучевое электрическое сканирование с максимальным углом отклонения луча от нормали к раскрыву ФАР не менее 45°. Применение таких модулей при построении ФАР с широкоугольным электрическим сканированием луча позволяет существенно уменьшить габариты антенной системы, включающей ФАР и систему управления лучом, значительно упростить коммутацию цепей управления фазовращателями элементов ФАР за счет исключения длинных проводников, соединяющих фазовращатели с системой управления лучом, и в результате повысить технологичность сборки и надежность антенной системы в целом, а также увеличить коэффициент усиления ФАР за счет снижения погрешности установки требуемых фазовых сдвигов в фазовращателях. Использование модулей проходной ФАР в антенных системах с количеством элементов 10000 и более дает возможность сохранить низкое вносимое элементом ФАР ослабление за счет отсутствия необходимости увеличения его длины при большом количестве элементов в модуле ФАР, и, таким образом, сохранить высокий коэффициент усиления ФАР.

Литература

1. Charles R. Boyd, Jr. Ferrite Phased Array Antennas: Toward a More Affordable Design Approach // 1987 IEEE AP-S International Symposium Digest, Vol. II, 1987. Pp. 1168-1171.

2. Долгачев A.B. Конструктивно оптимальные неэквидистантные ФАР // Фазотрон. Информационно-аналитический журнал. №1-2 (10), 2007. С.23-27.

3. Патент России №2461930. Модуль проходной фазированной антенной решетки. Русов Ю.С., Голубцов М.Е., Крехтунов В.М., Нефедов С.И.; МГТУ им. Н.Э. Баумана. Заявл. 30.12.2010. Опубл. 20.09.2012. Бюл. №26.


МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ
МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ
МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ
МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ
МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ
МОДУЛЬ ПРОХОДНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ С ДРАЙВЕРОМ УПРАВЛЕНИЯ ФАЗОВРАЩАТЕЛЕМ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 71.
23.02.2019
№219.016.c6ea

Способ стимулирующей предпосевной обработки семян яровой пшеницы

Производят предпосевную обработку семян яровой пшеницы водным раствором, содержащим стимулятор роста растений. В качестве стимулятора роста растений используют комплексный препарат, включающий в свой состав гиббереллин, гумат калия или натрия и биофунгицид «Фитоспорин-М» при дозе гиббереллина...
Тип: Изобретение
Номер охранного документа: 0002680582
Дата охранного документа: 22.02.2019
23.02.2019
№219.016.c6f5

Способ противодействия оптикоэлектронным системам с лазерным наведением

Изобретение относится к способам защиты важных промышленных, государственных и военных объектов от управляемого оружия с оптико-электронными системами наведения путем создания импульсной оптической помехи. Способ предусматривает регистрацию облучающих лазерных импульсов, декодирование...
Тип: Изобретение
Номер охранного документа: 0002680556
Дата охранного документа: 22.02.2019
26.02.2019
№219.016.c823

Способ контроля износа режущего инструмента токарного станка в процессе обработки детали

Изобретение относится к области металлообработки и может быть использовано для текущего контроля износа режущего инструмента. Способ контроля включает использование двух хронометрических датчиков, установленных по единой оси вращения обрабатываемой детали на валу мотор-редуктора и на задней...
Тип: Изобретение
Номер охранного документа: 0002680632
Дата охранного документа: 25.02.2019
30.03.2019
№219.016.f922

Ароматические полиэфиры

Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы: где n=1-99, m=1-99, z=1-15. Технический результат – получение ароматических полиэфиров, характеризующихся повышенными показателями огне-, термо-, теплостойкости, а также механических...
Тип: Изобретение
Номер охранного документа: 0002683268
Дата охранного документа: 27.03.2019
30.03.2019
№219.016.f925

Огнестойкий ароматический полиэфир

Изобретение относится к галогенсодержащим ароматическим полиэфиркетонам. Описан огнестойкий ароматический полиэфир формулы:
Тип: Изобретение
Номер охранного документа: 0002683270
Дата охранного документа: 27.03.2019
13.04.2019
№219.017.0c55

Способ удаления эндотоксинов из биологических жидкостей с помощью ковалентно иммобилизованного лизоцима в качестве лиганда

Изобретение относится к технологиям использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: практическая реализация идеи применения иммобилизованного...
Тип: Изобретение
Номер охранного документа: 0002684639
Дата охранного документа: 11.04.2019
19.04.2019
№219.017.1cbb

Поддон для метаемого измерительного зонда

Изобретение относится к области средств и технологий обеспечения разгона метаемого физического тела: элемента, объекта, измерительной сборки в метательном устройстве до заданной начальной скорости перемещения тела в пространстве. Поддон для метаемого измерительного зонда, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002685011
Дата охранного документа: 16.04.2019
19.04.2019
№219.017.1d63

Способ повышения надежности и качества функционирования партии гибридных и монолитных интегральных схем

Изобретение относится к повышению надежности и качества функционирования партии полупроводниковых монолитных и гибридных интегральных схем (ИС). Сущность: ИС подвергают искусственному старению, в результате которого происходит деградация параметров материалов и структуры ИС и изменение их...
Тип: Изобретение
Номер охранного документа: 0002684943
Дата охранного документа: 16.04.2019
16.05.2019
№219.017.528e

Способ определения диаграммы направленности антенны навигационного спутника

Изобретение относится к радиолокации, а именно к способам определения характеристик излучения антенн, и может быть использовано в составе аппаратно-программных комплексов и устройств для определения пространственной амплитудной диаграммы направленности передающих антенн навигационных спутников....
Тип: Изобретение
Номер охранного документа: 0002687512
Дата охранного документа: 14.05.2019
17.05.2019
№219.017.52d9

Способ изготовления клееного бруса

Изобретение относится к деревообрабатывающей промышленности, в частности к производству клееного бруса. Внутренний слой клееного бруса выполняют из чередующихся слоев из цельных досок и отдельных слоев из отрезков досок, которые укладывают с образованием промежутков между ними. При этом...
Тип: Изобретение
Номер охранного документа: 0002687603
Дата охранного документа: 15.05.2019
Показаны записи 21-25 из 25.
04.04.2018
№218.016.36cc

Гетероструктурный полевой транзистор на основе нитрида галлия с улучшенной температурной стабильностью вольт-амперной характеристики

Изобретение относится к области радиотехники и электроники. В гетероструктурном полевом транзисторе на основе нитрида галлия с улучшенной стабильностью вольт-амперной характеристики, включающем подложку из карбида кремния, канальный слой, буферный слой, барьерный слой на основе AlGaN, слой...
Тип: Изобретение
Номер охранного документа: 0002646536
Дата охранного документа: 05.03.2018
20.02.2019
№219.016.c09a

Способ управления летательными аппаратами по курсу в угломерной двухпозиционной радиолокационной системе

Изобретение относится к технике управления и может применяться для наведения летательных аппаратов (ЛА) на радиоизлучающие воздушные цели с использованием угломерных двухпозиционных радиолокационных систем. Техническим результатом является уменьшение кривизны траектории ЛА и плавный вывод его в...
Тип: Изобретение
Номер охранного документа: 0002308093
Дата охранного документа: 10.10.2007
20.03.2019
№219.016.e8f7

Элемент фазированной антенной решетки

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов. Элемент фазированной антенной решетки (ФАР), работающий на волнах, поляризованных по кругу, содержит диэлектрический излучатель (1), волновод (2) излучателя, согласующий волновод (3), волноводный ферритовый фазовращатель (ВФФВ)...
Тип: Изобретение
Номер охранного документа: 0002439759
Дата охранного документа: 10.01.2012
09.05.2019
№219.017.509b

Элемент проходной фазированной антенной решетки

Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов. Техническим результатом является уменьшение поперечных размеров, снижение уровня вносимых СВЧ-потерь, увеличение коэффициента усиления ФАР, упрощение конструкции, повышение ее технологичности, прочности и стойкости к ударным и...
Тип: Изобретение
Номер охранного документа: 0002461931
Дата охранного документа: 20.09.2012
09.05.2019
№219.017.50a6

Модуль проходной фазированной антенной решетки

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов. Основание модуля проходной ФАР выполнено в виде жесткой пластины, содержащей печатные проводники с контактными площадками и штыри, установленные вдоль пластины по обе ее стороны, между которыми на пластине размещены элементы...
Тип: Изобретение
Номер охранного документа: 0002461930
Дата охранного документа: 20.09.2012
+ добавить свой РИД