×
13.02.2018
218.016.2080

Результат интеллектуальной деятельности: Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроэнергетике и может быть использовано для локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения. Способ локации дефектных изоляторов заключается в том, что вдоль трассы линии электропередачи высокого напряжения прямолинейно перемещают на расстоянии друг от друга L два электромагнитных датчика и подключенные к ним электронные осциллографы. Расстояние между датчиками L вычисляют посредством глобальных GPS- или ГЛОНАСС навигационных систем. С помощью приемников временной синхронизации одновременно и с одинаковой скоростью горизонтальной развертки на электронные осциллографы записывают осциллограммы напряжения в течение времени распространения электромагнитного импульса от одного датчика до другого τ=L/ν, где ν - скорость распространения электромагнитного импульса. На каждой из записанных осциллограмм вычисляют время появления импульсов напряжения Δt (i=1…n, i - номер импульса, n - количество импульсов на первой осциллограмме) и (j=1…m, j - номер импульса, m - количество импульсов на второй осциллограмме), время появления импульсов на первой и второй осциллограммах поочередно попарно суммируют (k=1…n⋅m). Из всех времен t выбирают то время t, которое равно времени τ, а соответствующие слагаемые, формирующие сумму t, обозначают как Δt и . На основе известного расстояния до первого электромагнитного датчика x и времени Δt определяют расстояние до места расположения дефектной гирлянды изоляторов х по выражению: Техническим результатом является повышение точности локации дефектной гирлянды изоляторов. 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для локации дефектов в изоляции воздушных линий электропередачи (ЛЭП) высокого и сверхвысокого напряжений, например «нулевых» изоляторов в поддерживающих и натяжных гирляндах.

Известен способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения, основанный на измерении интенсивности электромагнитного излучения в видимой части спектра (Левичев В.Ю., Овсянников А.Г., Сибиряков В.Г. Электронно-оптический дефектоскоп «Филин-3» // Приборы и техника эксперимента. - 1987, №2). Для этого в темное время суток измеряют интенсивность свечения, создаваемого короной на дефектной изоляции высоковольтных воздушных линий электропередачи и сопоставляют с интенсивностью свечения на неповрежденной изоляции.

Недостаток такого способа - трудоемкость диагностики, требующая обхода всей линии электропередачи, а также необходимость выполнения измерений в темное время суток.

Известен также способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения (прототип), в котором дефекты диагностируются и локализуются путем измерения интенсивности электромагнитного излучения в области частот от сотен кГц до десятков МГц путем вдольтрассового облета линий электропередачи (Дикой В.П., Овсянников А.Г. Электромагнитная аэроинспекция воздушных линий электропередачи. - Электрические станции, №3, 1999). Локация повреждений изоляции (дефектов в гирляндах изоляторов) выполняется путем сопоставления (привязки) одновременно выполняемой записи видеоизображения линии электропередачи с участком осциллограммы, где наблюдается повышенная интенсивность электромагнитного излучения. Измеряемое действующее значение интенсивности электромагнитного излучения в широком спектре частот зависит от удаленности источников излучения и начальной амплитуды электромагнитной волны, которая в общем случае случайна в различные моменты времени. При передвижении вдоль трассы средняя интенсивность электромагнитного излучения, определяемая множеством различных дефектов (т.е. суммируемая от всех источников излучения), может слабо изменяться от опоры к опоре, не позволяя явно определить максимум излучения и точно локализовать дефект в изоляции.

Недостатком этого способа является низкая точность локации дефектов линейной изоляции (дефектных гирлянд).

Задачей изобретения (техническим результатом) является повышение точности локации дефектных линейных изоляторов на воздушных линиях электропередачи высокого напряжения.

Эта задача достигается тем, что в известном способе локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения, основанном на регистрации электрических импульсов с помощью электромагнитного датчика и подключенного к нему электронного осциллографа (ЭО), вдоль трассы линии электропередачи на расстоянии друг от друга Lд прямолинейно перемещают два электромагнитных датчика (ЭМД1 и ЭМД2) и подключенные к ним записывающие электронные осциллографы. Расстояние между датчиками Lд вычисляют с помощью GPS- или ГЛОНАСС навигационных систем. Посредством приемников временной синхронизации (ПВС) одновременно и с одинаковой скоростью горизонтальной развертки на осциллографы записывают осциллограммы напряжения в течение времени распространения электромагнитного импульса от одного датчика до другого τд-Lд/ν, где ν - скорость распространения электромагнитного импульса по воздушной линии электропередачи. На каждой из записанных осциллограмм выполняют измерение времен появления импульсов Δti (i=1…n, i - номер импульса, n - количество импульсов на первой осциллограмме) и (j=1…m, j - номер импульса, m - количество импульсов на второй осциллограмме). Времена появления импульсов на первой и второй осциллограммах поочередно попарно суммируют . Из всех времен tk выбирают ту сумму времен ( - времена распространения электромагнитного импульса от дефектного изолятора до первого и второго электромагнитных датчиков), которая равна времени τд. Исходя из расстояния до первого электромагнитного датчика хд1 и времени ΔtA определяют расстояние до места расположения дефектной гирлянды изоляторов xдеф по выражению

xдеф=xд1-ΔtАν.

На фиг.1 показано устройство, реализующее предлагаемый способ; на фиг. 2 представлены осциллограммы импульсов напряжения, наводимых электрическими разрядами в дефектной изоляции (дефектных гирляндах) в электромагнитных датчиках и записываемых электронными осциллографами; на фиг. 3 поясняется синхронизация горизонтальной развертки электронных осциллографов посредством приемников временной синхронизации (ПВС) и спутниковой глобальной системы навигации.

Устройство (фиг. 1) содержит воздушную линию электропередачи высокого напряжения (1) с дефектами линейной изоляции (2 и 3), на которой реализуется предлагаемый способ. Дефектная гирлянда с дефектным/нулевым изолятором (дефект под номером 2) находится между электромагнитными датчиками (4), расположенными совместно с электронными осциллографами (5) вдоль линии электропередачи на некотором расстоянии Lд. В качестве электромагнитных датчиков могут применяться антенны различных конструкций, например рамочные.

Способ осуществляется следующим образом. Над линией электропередачи перемещают (например, с помощью беспилотных летательных аппаратов) электромагнитные датчики ((4) - фиг. 1), к которым подключены ЭО ((5) - фиг. 1), горизонтальные развертки которых запускают одновременно с помощью ПВС (6) - фиг. 3 [Филимонов С.Н. О некоторых проблемах синхронизации точного времени сигнала ГЛОНАСС // T-Comm. 2013, №7, с. 130-132]. ПВС синхронизируются спутником (7) (фиг. 3) или системой спутников. На каждой осциллограмме (записи электромагнитных импульсов) измеряют времена начала/появления импульсов Δt: для сигналов первого ЭМД1 и, соответственно, на первой осциллограмме эти времена обозначают как Δti, для - второго ЭМД2 и второй осциллограммы - . Путем поочередного парного сложения времен появления импульсов на разных осциллограммах выбирают ту сумму времен tk, которая равна времени распространения импульса от одного электромагнитного датчика до другого - τд. Время τд=Lд/ν определяют на основе расстояния между электромагнитными датчиками Lд=((X2-X1)2+(Y2-Y1)2+(Z2-Z1)2)0.5. Пространственные координаты датчиков {X1,Y1,Z1} и {X2,Y2,Z2} измеряют и записывают одновременно с осциллограммами во время движения посредством GPS- или ГЛОНАСС навигаторов, устанавливаемых на летательные аппараты. Скорость распространения электромагнитной волны в воздухе принимают равной ν≅300 м/мкс. Обозначая времена появления импульсов от первого датчика Δti (i=1…n - номер импульса на первой осциллограмме), а от второго - , (k=1…n⋅m) - номер импульса на первой второй), рассчитывают времена (k=1…n⋅m). Из всех времен tk выбирают то, которое равно τд, и обозначают его как tγ, а слагаемые, входящие в tγ, как ΔtA и . На основе известного положения первого ЭМД1д1) определяют место расположения дефектной гирлянды изоляторов по выражению:

На фиг. 2 показаны импульсы напряжения, формируемые тремя дефектами в линии электропередачи ((2-3) - фиг. 1), один из которых (2) расположен между электромагнитными датчиками (4). Расстояние между электромагнитными датчиками Lд=3000 м. На первой осциллограмме, полученной от первого ЭМД1 (фиг. 2, а), расположенного на расстоянии хд1 от условного начала линии, времена появления импульсов составляют: первого импульса напряжения (u1)-Δt1=1,67 мкс, второго (u2)-Δt2=6,7 мкс. На осциллограмме, полученной путем измерения напряжений на втором ЭМД2 (фиг. 2, б), времена появления сигналов ( и ) соответственно равны: и . Все суммы времен появления сигналов на обеих осциллограммах равны (в мкс):; ; ; . Одна из сумм времен распространения сигналов (t3) равна времени пробега электромагнитной волны по диагностируемому участку (τд=10 мкс), поэтому внутри этого участка имеется дефект. Определяем (ΔtA=Δt2, ). Координата расположения дефекта (2) определяется по импульсам u2 и (фиг. 2). Расстояние до дефектной гирлянды равно xдеф=xд1-ΔtA⋅ν=xд1-6,7⋅300 (м).

Таким образом, увеличение точности определения координат дефектной гирлянды изоляторов осуществляется на основе измерения времен появления импульсов напряжения (ΔtA=Δt2 или ), формируемых электрическим разрядом в дефектной гирлянде изоляторов, на двух одновременно записываемых осциллограммах, посредством электромагнитных датчиков и осциллографов, расположенных вдоль трассы воздушной линии электропередачи на расстоянии Lд. По известным координате первого электромагнитного датчика хд1, расстоянию между обоими датчиками Lд, времени ΔtA и скорости распространения электромагнитной волны ν рассчитывается расстояние до дефектной гирлянды изоляторов xдеф.


Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения
Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения
Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения
Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения
Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения
Способ локации дефектных гирлянд изоляторов на воздушных линиях электропередачи высокого напряжения
Источник поступления информации: Роспатент

Показаны записи 61-70 из 95.
02.07.2019
№219.017.a319

Способ сушки древесины

Изобретение относится к технологиям сушки древесины и может быть использовано в деревообделочной и мебельной промышленности. Способ сушки древесины включает штабелирование древесной продукции в сушильной камере, установку электродов с обеспечением электрического контакта между ними и древесной...
Тип: Изобретение
Номер охранного документа: 0002692905
Дата охранного документа: 28.06.2019
17.07.2019
№219.017.b4fc

Делитель мощности

Изобретение относится к технике СВЧ и может найти применение в системах активных фазированных антенных решеток, радиопередающих и других устройствах и системах СВЧ. Предложен делитель мощности, содержащий входное плечо, подключенное через разветвитель из четвертьволновых отрезков линии передачи...
Тип: Изобретение
Номер охранного документа: 0002694435
Дата охранного документа: 15.07.2019
02.10.2019
№219.017.cb68

Селективное зеркало

Изобретение относится к области оптического приборостроения, многослойных оптических фильтров, элементов квантовой электроники и может быть использовано для защиты от ослепляющего излучения, узкополосной фильтрации оптического излучения, создания зеркальных элементов с регулируемым...
Тип: Изобретение
Номер охранного документа: 0002701186
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cb91

Способ получения последовательности идентичных фемтосекундных импульсов

Изобретение относится к области лазерной техники и касается способа получения последовательности идентичных фемтосекундных импульсов. Способ включает в себя разделение излучения лазера на две части, одна из которых поступает на фотодетектор, где выделяется сигнал с частотой повторения...
Тип: Изобретение
Номер охранного документа: 0002701209
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cca9

Устройство для отделения газовых фракций из нефтесодержащих вод

Изобретение относится к области нефтедобычи и может быть использовано для выделения газовых фракций из нефтесодержащих вод. Устройство для отделения газовых фракций из нефтесодержащих вод включает электролизер в виде емкости с погруженными в нее двумя плоскими электродами и соленоид....
Тип: Изобретение
Номер охранного документа: 0002701022
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cd43

Установка очистки нефтесодержащих сточных вод

Изобретение относится к флотационным установкам очистки сточных вод и может быть использовано на месторождениях нефти. Установка очистки нефтесодержащих сточных вод содержит импеллер 6, нагнетатель воздуха 3 и аэраторы. В импеллер 6 введены электроды, установленные на верхних гранях лопастей....
Тип: Изобретение
Номер охранного документа: 0002701023
Дата охранного документа: 24.09.2019
17.10.2019
№219.017.d679

Электростатический микроэлектромеханический генератор для подзаряда химического источника тока

Изобретение относится к электротехнике, в частности к микроэлектромеханическим генераторам, преобразующим энергию механических колебаний в электрическую энергию, и может быть использовано для подзаряда химического источника тока. Техническим результатом является расширение диапазона амплитуд...
Тип: Изобретение
Номер охранного документа: 0002702981
Дата охранного документа: 14.10.2019
10.11.2019
№219.017.dfee

Токоприемник нижнего токосъема

Изобретение относится к токоприемникам транспортных средств. Токоприемник нижнего токосъема содержит башмак с держателем, находящимся в постоянном контакте снизу с контактным рельсом, цилиндрическую пружину, кулачок, стержни-направляющие поступательного движения башмака, неподвижный блок и...
Тип: Изобретение
Номер охранного документа: 0002705391
Дата охранного документа: 07.11.2019
27.11.2019
№219.017.e717

Способ получения композиционного материала на основе alo -ticn

Изобретение относится к производству композиционного материала на основе AlO-TiCN и может быть использовано в инструментальной промышленности при производстве сменных многогранных режущих пластин. Для получения композиционного материала осуществляют подготовку порошковой смеси шихты, состоящей...
Тип: Изобретение
Номер охранного документа: 0002707216
Дата охранного документа: 25.11.2019
01.12.2019
№219.017.e866

Способ приготовления безглютенового соуса основного белого

Изобретение относится к общественному питанию и может быть использовано при производстве безглютенового соуса основного белого (БСОБ) специализированного назначения. Предложен способ приготовления безглютенового соуса основного белого, в котором овощи нарезают, пассеруют, добавляют соль,...
Тип: Изобретение
Номер охранного документа: 0002707791
Дата охранного документа: 29.11.2019
Показаны записи 21-23 из 23.
04.04.2018
№218.016.36eb

Волоконный лазер для генерации высокоэнергетических световых импульсов

Изобретение относится к лазерной технике. Волоконный лазер для генерации высокоэнергетических световых импульсов содержит источник накачки, ответвитель ввода излучения накачки, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно, устройство нелинейных потерь и...
Тип: Изобретение
Номер охранного документа: 0002646440
Дата охранного документа: 05.03.2018
03.10.2018
№218.016.8cf2

Способ определения места короткого замыкания на линиях электропередач

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания (места повреждения) на линиях электропередач высокого и сверхвысокого напряжений в сетях с эффективно заземленной нейтралью. Сущность: способ определения места короткого замыкания (КЗ)...
Тип: Изобретение
Номер охранного документа: 0002668336
Дата охранного документа: 28.09.2018
05.06.2023
№223.018.76f0

Способ определения фидера с однофазным замыканием на землю в трехфазных электрических сетях с неэффективно заземленной нейтралью

Использование: в области электроэнергетики. Технический результат - увеличение надежности и достоверности определения фидера с однофазным неустойчивым дуговым замыканием на землю в электрических сетях с неэффективно заземленной нейтралью. Согласно способу регистрируют переходные фазные...
Тип: Изобретение
Номер охранного документа: 0002738469
Дата охранного документа: 14.12.2020
+ добавить свой РИД