×
13.02.2018
218.016.206d

Результат интеллектуальной деятельности: ГИБКИЙ ТЕПЛОЗВУКОИЗОЛЯЦИОННЫЙ ВОЛОКНИСТЫЙ МАТЕРИАЛ НИЗКОЙ ПЛОТНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности. Обеспечение надежной работы теплоизоляции в условиях циклических тепловых нагрузок и вибраций и возможность противостоять экстремальным нагревам в случаях возгорания - важная задача при создании материалов для перспективных самолетов. Техническим результатом изобретения является значительное снижение удельного веса материала и повышение его гибкости при сохранении прочностных и теплозащитных свойств материала, а также обеспечение требований пожаробезопасности в случае возгорания. Для достижения заявленного технического результата предложен гибкий теплозвукоизоляционный волокнистый материал, содержащий в качестве основы минеральные волокна и волокна растительного происхождения, причем в качестве волокон растительного происхождения материал содержит котонизированные волокна льна, а в качестве минеральных волокон - волокна диаметром не более 5 мкм, выбранные из группы, содержащей базальтовые, кварцевые, кремнеземные волокна или волокна на основе оксида алюминия, кроме того, материал содержит органическое связующее, при этом плотность материала составляет не более 15 кг/м. 5 з.п. ф-лы, 1 табл.

Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности.

Обеспечение надежной работы теплоизоляции в условиях циклических тепловых нагрузок и вибраций и возможность противостоять экстремальным нагревам в случаях возгорания - важная задача при создании материалов для перспективных самолетов.

Известен высокотермостойкий изоляционный материал, включающий два вида волокон: тугоплавкие керамические волокна и стекловолокна, а также органическое или неорганическое связующее (US 2016244001 A1, B60R 13/08, опубл. 25.08.2016).

Недостатком данного материала является высокая плотность, обусловленная плотностью составляющих его волокон. Кроме того, если использовать органическое связующее, то материал не будет обладать достаточной термостойкостью из-за низкой температуры разложения органического связующего, а если использовать неорганическое связующее, то материал утратит гибкие свойства.

Известен гибкий тепло- и огнестойкий материал, включающий органические волокна и терморасширяющееся вещество, а также, если необходимо, неорганические волокна (RU 2111779 C1, B32B 3/26, опубл. 27.05.1998). Огнестойкими свойствами материал обладает благодаря обеспечению процесса совместного образования углей волокон и расширяющегося наполнителя. Органические волокна, содержащиеся в таком материале, должны быть подвергнуты специальной обработке замедляющим воспламенение веществом для обеспечения доминирования реакции карбонизации над процессом механической деградации. Разработчики материала выяснили, что при совместном обугливании органического волокна и расширяемого наполнителя в интервале температур от 200 до 500°С происходит смачивание поверхности волокна жидкими кислотными веществами разлагающегося расширяемого наполнителя. В результате создается усиленная волокнами аморфная структура с углеродными связями, способная к дальнейшему расширению. С ростом температуры выше 500°С на воздухе окисление угля начинается на поверхности и распространяется внутрь со скоростью, зависящей от диффузии кислорода в структуру. При этом находящиеся в составе гибридного материала неорганические термостойкие волокна задерживают полное окисление угля в материале на срок от 2 до 10 минут при температурах до 1200°С. Неорганические волокна образуют скелетную структуру, которая сохраняет свойства теплоизоляции даже после полной газификации всех углеродсодержащих компонентов в материале.

Недостатком данного материала является то, что он практически полностью состоит из полимерных органических волокон, имеющих невысокую температуру эксплуатации, в результате чего данный материал, хотя и способен сдерживать процесс распространения пламени в случае возгорания от 2 до 10 минут, но при стандартной работе в качестве изоляции данный материал способен выдерживать циклические тепловые нагрузки в режиме «нагрев-охлаждение» без деградации в узком температурном интервале, не включающим отрицательные температуры и кратковременные забросы до 200°С и выше.

Известен также волокнистый теплоизоляционный материал, принятый за прототип, включающий минеральное и целлюлозное волокно в соотношении (96-99):(1-4) и предназначенный для многоразового использования в качестве высокотемпературной теплоизоляции изделий, эксплуатируемых при температурах до 1200°С (SU 956686 A1, D21H 5/18, опубл. 07.09.1982). В качестве минерального волокна материал содержит кварцевое или кремнеземное стекловолокно диаметром 0,5-3,0 мкм и содержанием оксида кремния от 99,0 до 99,9%, а в качестве целлюлозного волокна лиственную беленую целлюлозу.

Недостатком данного материала является то, что используемая здесь лиственная целлюлоза имеет низкое отношение длины к диаметру и ярко выраженную "ленточную" форму волокон, придающую им чрезмерно высокую гибкость и склонность к флокуляции. В то время как в разрабатываемом в заявляемом изобретении суперлегковесном материале для обеспечения стабильности их структуры необходимы волокна, обладающие высокой устойчивостью к изгибу в сочетании с достаточно большой относительной длиной, при условии сохранения эластичности, стойкости к растрескиванию и связующих свойств целлюлозных волокон, в результате чего теплоизоляционный материал будет обладать недостаточной механической прочностью в условиях вибрации.

Данный недостаток может быть устранен использованием волокон льна, обладающих формой длинных гладких стержней и сохраняющих все положительные свойства, связанные с их целлюлозным составом (гибкость и эластичность, набухаемость в воде и связующие свойства).

Технической задачей данного изобретения является получение гибкого теплоизоляционного материала низкой плотности.

Техническим результатом изобретения является значительное снижение удельного веса материала и повышение его гибкости при сохранении прочностных и теплозащитных свойств материала, а также обеспечение требований пожаробезопасности в случае возгорания.

Для достижения заявленного технического результата предложен гибкий теплозвукоизоляционный волокнистый материал, содержащий в качестве основы минеральные волокна и волокна растительного происхождения, причем в качестве волокон растительного происхождения материал содержит котонизированные волокна льна, а в качестве минеральных волокон - волокна диаметром не более 5 мкм, выбранные из группы, содержащей базальтовые, кварцевые, кремнеземные волокна или волокна на основе оксида алюминия, кроме того, материал содержит органическое связующее, при этом плотность материала составляет не более 15 кг/м3.

Предпочтительно содержание котонизированного льняного волокна составляет 5-15% вес. от общего веса волокна в материале.

Предпочтительно в качестве органического связующего использован раствор сульфоэфира целлюлозы с концентрацией 0,01-3%.

Предпочтительно в качестве органического связующего использован раствор карбоксиметилцеллюлозы с концентрацией 0,01-3%.

Предпочтительно в качестве органического связующего использована эмульсия поливинилацетата с концентрацией 5-15%.

Предпочтительно в качестве органического связующего применяются термопластичные полиэфирные волокна в количестве 1-5% вес. от общего веса волокна в материале.

Теплозащитный волокнистый слой должен иметь малую теплопроводность, быть легким, пористым, достаточной толщины для обеспечения надежной теплоизоляции. Структура теплоизоляционного слоя должна обеспечить сравнительную неподвижность заключенного в нем воздуха. Наличие в волокнистом теплоизоляционном слое возможно большего количества неподвижного воздуха, являющегося плохим проводником тепла, способствует повышению изоляционной способности материала. Поэтому теплоизоляционный материал должен быть более рыхлым и пористым для увеличения содержания в нем сравнительно неподвижного воздуха и сохранять заданную толщину в процессе эксплуатации.

Известно, что для улучшения теплоизоляционной способности материала при его изготовлении используют различные волокна и нити, в т.ч. в различных смесях и сочетаниях между собой, при широком варьировании структурных характеристик материала, его толщины, поверхностной плотности, пористости, объемного веса. При этом удается повысить теплозащитные свойства материала, однако значительное улучшение теплозащитных свойств достигают за счет увеличения толщины материала и, следовательно, его массы, что отрицательно влияет на эксплуатационные характеристики изделия.

В предложенном материале, минеральные волокна, такие как базальтовые, кварцевые, кремнеземные или волокна на основе оксида алюминия, служат для создания теплоизолирующей и звукоизолирующей структуры материала и предотвращения разрушения материала и распространения пламени при пожарах с температурой горения до 1200°С в течении не менее 15 минут и являются основой предлагаемого материала.

Теплозвукоизоляционный волокнистый материал в качестве наполнителя содержит обработанные растительные волокна льна (котонизированное льняное волокно) или других растений, служащие для снижения удельного веса материала при сохранении гибкости и прочностных качеств. Наличие растительного волокна в массе минеральных волокон при воздействии пламени и высоких температур приведет к обугливанию котонизированного волокна, что не будет способствовать распространению огня через слой материала. При необходимости котонизированное льняное волокно может быть обработано антипиреновыми составами.

Для улучшения крепления волокон в материале в него в процессе получения волокнистого мата вводят связующее в виде раствора и/или в виде термопластичных полиэфирных волокон.

В качестве связующего используются растворы сульфоэфира целлюлозы, карбоксиметилцеллюлозы, поливинилацетатная эмульсия и термопластичные полиэфирные волокна. Термопластичные полиэфирные волокна вводятся на этапе приготовления волокнистой массы, после чего проводится раскладка волокон посредством струи сжатого воздуха. Введение раствора сульфоэфира целлюлозы, карбоксиметилцеллюлозы и поливинилацетатаной эмульсии происходит распылением при раскладке волокнистого мата или распылением непосредственно на мат, после чего волокнистый мат проходит низкотемпературную термообработку в интервале температур 80-180°С для активации связующего компонента.

Такой вариант сочетания термостойких минеральных волокон и легковесных растительных волокон в количестве от 5 до 15% вес позволяет достичь оптимального сочетания эксплуатационных свойств. При существенном снижении удельного веса (не более 15 кг/м3) материал сохраняет свои тепло- и звукоизоляционные свойства, обладает повышенной гибкостью и отвечает требованиям пожарной безопасности. Снижение общего веса самолета и, в частности, снижение веса теплозвукоизоляции позволит экономить топливные ресурсы.

Данное изобретение обеспечивает значительное снижение удельного веса материала при сохранении гибкости и прочности, материал предназначен для использования в авиационной промышленности.

Изобретение иллюстрируется следующими примерами его осуществления.

Пример 1

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 85%(вес) базальтовых волокон материала марки БУТВ со средним диаметром 2-4 мкм, 10%(вес) котонизированных льняных волокон и 5%(вес) термопластичных полиэфирных волокон и термообработан при температуре 180°С. Была определена плотность материала и его гибкость по ГОСТ 17177, результаты представлены в таблице.

Пример 2

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 70%(вес) кварцевых волокон ТКВ со средним диаметром 3-5 мкм, 25%(вес) волокон на основе оксида алюминия, 5%(вес) котонизированных льняных волокон, в качестве связующего использовали раствор сульфоэфира целлюлозы концентрацией 3%. Материал термообработан при температуре 100°С и определены его свойства аналогично примеру 1. Свойства материала представлены в таблице.

Пример 3

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 85%(вес) кварцевых волокон ТКВ средним диаметром 2-4 мкм, 15%(вес) котонизированных льняных волокон и пропитан раствором сульфоэфира целлюлозы концентрацией 0,01% в качестве связующего, а затем термообработан при температуре 120°С. Свойства материала представлены в таблице.

Пример 4

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 60%(вес) кварцевых волокон ТКВ средним диаметром 2-4 мкм, 28%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм, 12%(вес) котонизированных льняных волокон и пропитан раствором карбоксиметилцеллюлозы концентрацией 0,01%, затем термообработан при температуре 70°С. Свойства материала представлены в таблице.

Пример 5

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 40%(вес) кремнеземных волокон диаметром 3-4 мкм, 55%(вес) базальтовых волокон материала марки БУТВ диаметром 3-5 мкм, 5%(вес) котонизированных льняных волокон и пропитан раствором карбоксиметилцеллюлозы концентрацией 3% в качестве связующего, затем термообработан при температуре 120°С. Свойства материала представлены в таблице.

Пример 6

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 70%(вес) кварцевых волокон ТКВ диаметром 2-4 мкм, 15%(вес) муллитовых волокон диаметром 1-3 мкм и 15%(вес) котонизированных льняных волокон. В качестве связующего пропитан эмульсией поливинилацетата концентрацией 5%, термообработан при 110°С. Свойства материала представлены в таблице.

Пример 7

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из 90%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм и 10%(вес) котонизированных льняных волокон, пропитан эмульсией поливинилацетата концентрацией 15%, термообработан при 115°С. Свойства материала представлены в таблице.

Пример 8

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из 89%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм, 5%(вес) котонизированных льняных волокон, 1%(вес) термопластичных эфирных волокон и термообработан при 150°С. Свойства материала представлены в таблице.

Пример 9 (по прототипу)

Материал изготовлен из смеси 99%(вес) кварцевого волокна диаметром 0,5-3,0 мкм и 1%(вес) лиственной целлюлозы, полученной из березовой древесины, получен по бумажной технологии и испытан аналогично примерам 1-5.

Все полученные материалы были испытаны на гибкость по ГОСТ17177, был определен удельный вес материалов.

Характеристики представлены в таблице.

Из таблицы видно, что предложенный материал имеет низкую плотность (менее 15 кг/м3), очень высокую гибкость (до 20 мм) и будет востребован в качестве легковесной самолетной теплоизоляции.

Источник поступления информации: Роспатент

Показаны записи 221-230 из 371.
19.01.2018
№218.015.ff61

Высокожаропрочный литой сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl. Сплав на основе интерметаллида NiAl содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002629413
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.01b7

Прибор контроля фазового состава стали

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и...
Тип: Изобретение
Номер охранного документа: 0002629920
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.046c

Гидрофобный пористый керамический материал и способ его получения

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1,...
Тип: Изобретение
Номер охранного документа: 0002630523
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.100d

Гранулируемый сплав на основе хрома и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к гранулируемым интерметаллидным сплавам, и может быть использовано для изготовления инструментов для высокотемпературной изотермической штамповки. Предложен сплав на основе хрома, содержащий, мас.%: 20,0-40,0 молибдена, 3,0-15,0 железа,...
Тип: Изобретение
Номер охранного документа: 0002633680
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.100e

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, и может быть использовано при изготовлении рабочих лопаток газотурбинных установок. Жаропрочный сплав на основе никеля содержит, мас. %: углерод 0,05-0,15, хром 11,9-12,7, кобальт 10,0-12,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002633679
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1075

Способ изготовления полого конструктивного элемента из композиционного материала

Изобретение относится к строительной отрасли. Способ изготовления полого конструктивного элемента из композиционного материала включает заполнение газом удлиненной надувной формы, нанесение на нее антиадгезионного воздухонепроницаемого слоя и слоя армирующего наполнителя с получением заготовки,...
Тип: Изобретение
Номер охранного документа: 0002633719
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.109c

Фенолформальдегидное связующее и стеклопластик на его основе

Изобретение относится к стеклопластикам, фенолформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий. Стеклопластик включает препрег, в составе которого используется стеклоткань и фенолформальдегидное связующее, которое...
Тип: Изобретение
Номер охранного документа: 0002633717
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.10f1

Термостойкая полимерная теплоотражающая композиция с низкой излучательной способностью

Изобретение относится к термостойким композициям с высокой отражательной и низкой излучательной способностью для покрытий, которые могут наносится на жесткие элементы конструкций, подвергающихся воздействию открытого пламени. Описана термостойкая полимерная теплоотражающая композиция,...
Тип: Изобретение
Номер охранного документа: 0002633900
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.144c

Способ производства литейных жаропрочных наноструктурированных коррозионно-стойких сплавов на никелевой основе

Изобретение относится к области металлургии, в частности к производству литейных жаропрочных углеродсодержащих и безуглеродистных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей. Способ производства литейных жаропрочных сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002634828
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.171c

Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке высоколегированных псевдо-β титановых сплавов и изделий из них, и может быть использовано в авиационной технике. Способ изготовления листовых полуфабрикатов из псевдо-β титановых сплавов включает...
Тип: Изобретение
Номер охранного документа: 0002635650
Дата охранного документа: 14.11.2017
Показаны записи 221-230 из 344.
19.01.2018
№218.015.ff61

Высокожаропрочный литой сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl. Сплав на основе интерметаллида NiAl содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002629413
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.01b7

Прибор контроля фазового состава стали

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и...
Тип: Изобретение
Номер охранного документа: 0002629920
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.046c

Гидрофобный пористый керамический материал и способ его получения

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1,...
Тип: Изобретение
Номер охранного документа: 0002630523
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.100d

Гранулируемый сплав на основе хрома и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к гранулируемым интерметаллидным сплавам, и может быть использовано для изготовления инструментов для высокотемпературной изотермической штамповки. Предложен сплав на основе хрома, содержащий, мас.%: 20,0-40,0 молибдена, 3,0-15,0 железа,...
Тип: Изобретение
Номер охранного документа: 0002633680
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.100e

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, и может быть использовано при изготовлении рабочих лопаток газотурбинных установок. Жаропрочный сплав на основе никеля содержит, мас. %: углерод 0,05-0,15, хром 11,9-12,7, кобальт 10,0-12,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002633679
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1075

Способ изготовления полого конструктивного элемента из композиционного материала

Изобретение относится к строительной отрасли. Способ изготовления полого конструктивного элемента из композиционного материала включает заполнение газом удлиненной надувной формы, нанесение на нее антиадгезионного воздухонепроницаемого слоя и слоя армирующего наполнителя с получением заготовки,...
Тип: Изобретение
Номер охранного документа: 0002633719
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.109c

Фенолформальдегидное связующее и стеклопластик на его основе

Изобретение относится к стеклопластикам, фенолформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий. Стеклопластик включает препрег, в составе которого используется стеклоткань и фенолформальдегидное связующее, которое...
Тип: Изобретение
Номер охранного документа: 0002633717
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.10f1

Термостойкая полимерная теплоотражающая композиция с низкой излучательной способностью

Изобретение относится к термостойким композициям с высокой отражательной и низкой излучательной способностью для покрытий, которые могут наносится на жесткие элементы конструкций, подвергающихся воздействию открытого пламени. Описана термостойкая полимерная теплоотражающая композиция,...
Тип: Изобретение
Номер охранного документа: 0002633900
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.144c

Способ производства литейных жаропрочных наноструктурированных коррозионно-стойких сплавов на никелевой основе

Изобретение относится к области металлургии, в частности к производству литейных жаропрочных углеродсодержащих и безуглеродистных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей. Способ производства литейных жаропрочных сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002634828
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.171c

Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке высоколегированных псевдо-β титановых сплавов и изделий из них, и может быть использовано в авиационной технике. Способ изготовления листовых полуфабрикатов из псевдо-β титановых сплавов включает...
Тип: Изобретение
Номер охранного документа: 0002635650
Дата охранного документа: 14.11.2017
+ добавить свой РИД