×
13.02.2018
218.016.206d

Результат интеллектуальной деятельности: ГИБКИЙ ТЕПЛОЗВУКОИЗОЛЯЦИОННЫЙ ВОЛОКНИСТЫЙ МАТЕРИАЛ НИЗКОЙ ПЛОТНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности. Обеспечение надежной работы теплоизоляции в условиях циклических тепловых нагрузок и вибраций и возможность противостоять экстремальным нагревам в случаях возгорания - важная задача при создании материалов для перспективных самолетов. Техническим результатом изобретения является значительное снижение удельного веса материала и повышение его гибкости при сохранении прочностных и теплозащитных свойств материала, а также обеспечение требований пожаробезопасности в случае возгорания. Для достижения заявленного технического результата предложен гибкий теплозвукоизоляционный волокнистый материал, содержащий в качестве основы минеральные волокна и волокна растительного происхождения, причем в качестве волокон растительного происхождения материал содержит котонизированные волокна льна, а в качестве минеральных волокон - волокна диаметром не более 5 мкм, выбранные из группы, содержащей базальтовые, кварцевые, кремнеземные волокна или волокна на основе оксида алюминия, кроме того, материал содержит органическое связующее, при этом плотность материала составляет не более 15 кг/м. 5 з.п. ф-лы, 1 табл.

Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности.

Обеспечение надежной работы теплоизоляции в условиях циклических тепловых нагрузок и вибраций и возможность противостоять экстремальным нагревам в случаях возгорания - важная задача при создании материалов для перспективных самолетов.

Известен высокотермостойкий изоляционный материал, включающий два вида волокон: тугоплавкие керамические волокна и стекловолокна, а также органическое или неорганическое связующее (US 2016244001 A1, B60R 13/08, опубл. 25.08.2016).

Недостатком данного материала является высокая плотность, обусловленная плотностью составляющих его волокон. Кроме того, если использовать органическое связующее, то материал не будет обладать достаточной термостойкостью из-за низкой температуры разложения органического связующего, а если использовать неорганическое связующее, то материал утратит гибкие свойства.

Известен гибкий тепло- и огнестойкий материал, включающий органические волокна и терморасширяющееся вещество, а также, если необходимо, неорганические волокна (RU 2111779 C1, B32B 3/26, опубл. 27.05.1998). Огнестойкими свойствами материал обладает благодаря обеспечению процесса совместного образования углей волокон и расширяющегося наполнителя. Органические волокна, содержащиеся в таком материале, должны быть подвергнуты специальной обработке замедляющим воспламенение веществом для обеспечения доминирования реакции карбонизации над процессом механической деградации. Разработчики материала выяснили, что при совместном обугливании органического волокна и расширяемого наполнителя в интервале температур от 200 до 500°С происходит смачивание поверхности волокна жидкими кислотными веществами разлагающегося расширяемого наполнителя. В результате создается усиленная волокнами аморфная структура с углеродными связями, способная к дальнейшему расширению. С ростом температуры выше 500°С на воздухе окисление угля начинается на поверхности и распространяется внутрь со скоростью, зависящей от диффузии кислорода в структуру. При этом находящиеся в составе гибридного материала неорганические термостойкие волокна задерживают полное окисление угля в материале на срок от 2 до 10 минут при температурах до 1200°С. Неорганические волокна образуют скелетную структуру, которая сохраняет свойства теплоизоляции даже после полной газификации всех углеродсодержащих компонентов в материале.

Недостатком данного материала является то, что он практически полностью состоит из полимерных органических волокон, имеющих невысокую температуру эксплуатации, в результате чего данный материал, хотя и способен сдерживать процесс распространения пламени в случае возгорания от 2 до 10 минут, но при стандартной работе в качестве изоляции данный материал способен выдерживать циклические тепловые нагрузки в режиме «нагрев-охлаждение» без деградации в узком температурном интервале, не включающим отрицательные температуры и кратковременные забросы до 200°С и выше.

Известен также волокнистый теплоизоляционный материал, принятый за прототип, включающий минеральное и целлюлозное волокно в соотношении (96-99):(1-4) и предназначенный для многоразового использования в качестве высокотемпературной теплоизоляции изделий, эксплуатируемых при температурах до 1200°С (SU 956686 A1, D21H 5/18, опубл. 07.09.1982). В качестве минерального волокна материал содержит кварцевое или кремнеземное стекловолокно диаметром 0,5-3,0 мкм и содержанием оксида кремния от 99,0 до 99,9%, а в качестве целлюлозного волокна лиственную беленую целлюлозу.

Недостатком данного материала является то, что используемая здесь лиственная целлюлоза имеет низкое отношение длины к диаметру и ярко выраженную "ленточную" форму волокон, придающую им чрезмерно высокую гибкость и склонность к флокуляции. В то время как в разрабатываемом в заявляемом изобретении суперлегковесном материале для обеспечения стабильности их структуры необходимы волокна, обладающие высокой устойчивостью к изгибу в сочетании с достаточно большой относительной длиной, при условии сохранения эластичности, стойкости к растрескиванию и связующих свойств целлюлозных волокон, в результате чего теплоизоляционный материал будет обладать недостаточной механической прочностью в условиях вибрации.

Данный недостаток может быть устранен использованием волокон льна, обладающих формой длинных гладких стержней и сохраняющих все положительные свойства, связанные с их целлюлозным составом (гибкость и эластичность, набухаемость в воде и связующие свойства).

Технической задачей данного изобретения является получение гибкого теплоизоляционного материала низкой плотности.

Техническим результатом изобретения является значительное снижение удельного веса материала и повышение его гибкости при сохранении прочностных и теплозащитных свойств материала, а также обеспечение требований пожаробезопасности в случае возгорания.

Для достижения заявленного технического результата предложен гибкий теплозвукоизоляционный волокнистый материал, содержащий в качестве основы минеральные волокна и волокна растительного происхождения, причем в качестве волокон растительного происхождения материал содержит котонизированные волокна льна, а в качестве минеральных волокон - волокна диаметром не более 5 мкм, выбранные из группы, содержащей базальтовые, кварцевые, кремнеземные волокна или волокна на основе оксида алюминия, кроме того, материал содержит органическое связующее, при этом плотность материала составляет не более 15 кг/м3.

Предпочтительно содержание котонизированного льняного волокна составляет 5-15% вес. от общего веса волокна в материале.

Предпочтительно в качестве органического связующего использован раствор сульфоэфира целлюлозы с концентрацией 0,01-3%.

Предпочтительно в качестве органического связующего использован раствор карбоксиметилцеллюлозы с концентрацией 0,01-3%.

Предпочтительно в качестве органического связующего использована эмульсия поливинилацетата с концентрацией 5-15%.

Предпочтительно в качестве органического связующего применяются термопластичные полиэфирные волокна в количестве 1-5% вес. от общего веса волокна в материале.

Теплозащитный волокнистый слой должен иметь малую теплопроводность, быть легким, пористым, достаточной толщины для обеспечения надежной теплоизоляции. Структура теплоизоляционного слоя должна обеспечить сравнительную неподвижность заключенного в нем воздуха. Наличие в волокнистом теплоизоляционном слое возможно большего количества неподвижного воздуха, являющегося плохим проводником тепла, способствует повышению изоляционной способности материала. Поэтому теплоизоляционный материал должен быть более рыхлым и пористым для увеличения содержания в нем сравнительно неподвижного воздуха и сохранять заданную толщину в процессе эксплуатации.

Известно, что для улучшения теплоизоляционной способности материала при его изготовлении используют различные волокна и нити, в т.ч. в различных смесях и сочетаниях между собой, при широком варьировании структурных характеристик материала, его толщины, поверхностной плотности, пористости, объемного веса. При этом удается повысить теплозащитные свойства материала, однако значительное улучшение теплозащитных свойств достигают за счет увеличения толщины материала и, следовательно, его массы, что отрицательно влияет на эксплуатационные характеристики изделия.

В предложенном материале, минеральные волокна, такие как базальтовые, кварцевые, кремнеземные или волокна на основе оксида алюминия, служат для создания теплоизолирующей и звукоизолирующей структуры материала и предотвращения разрушения материала и распространения пламени при пожарах с температурой горения до 1200°С в течении не менее 15 минут и являются основой предлагаемого материала.

Теплозвукоизоляционный волокнистый материал в качестве наполнителя содержит обработанные растительные волокна льна (котонизированное льняное волокно) или других растений, служащие для снижения удельного веса материала при сохранении гибкости и прочностных качеств. Наличие растительного волокна в массе минеральных волокон при воздействии пламени и высоких температур приведет к обугливанию котонизированного волокна, что не будет способствовать распространению огня через слой материала. При необходимости котонизированное льняное волокно может быть обработано антипиреновыми составами.

Для улучшения крепления волокон в материале в него в процессе получения волокнистого мата вводят связующее в виде раствора и/или в виде термопластичных полиэфирных волокон.

В качестве связующего используются растворы сульфоэфира целлюлозы, карбоксиметилцеллюлозы, поливинилацетатная эмульсия и термопластичные полиэфирные волокна. Термопластичные полиэфирные волокна вводятся на этапе приготовления волокнистой массы, после чего проводится раскладка волокон посредством струи сжатого воздуха. Введение раствора сульфоэфира целлюлозы, карбоксиметилцеллюлозы и поливинилацетатаной эмульсии происходит распылением при раскладке волокнистого мата или распылением непосредственно на мат, после чего волокнистый мат проходит низкотемпературную термообработку в интервале температур 80-180°С для активации связующего компонента.

Такой вариант сочетания термостойких минеральных волокон и легковесных растительных волокон в количестве от 5 до 15% вес позволяет достичь оптимального сочетания эксплуатационных свойств. При существенном снижении удельного веса (не более 15 кг/м3) материал сохраняет свои тепло- и звукоизоляционные свойства, обладает повышенной гибкостью и отвечает требованиям пожарной безопасности. Снижение общего веса самолета и, в частности, снижение веса теплозвукоизоляции позволит экономить топливные ресурсы.

Данное изобретение обеспечивает значительное снижение удельного веса материала при сохранении гибкости и прочности, материал предназначен для использования в авиационной промышленности.

Изобретение иллюстрируется следующими примерами его осуществления.

Пример 1

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 85%(вес) базальтовых волокон материала марки БУТВ со средним диаметром 2-4 мкм, 10%(вес) котонизированных льняных волокон и 5%(вес) термопластичных полиэфирных волокон и термообработан при температуре 180°С. Была определена плотность материала и его гибкость по ГОСТ 17177, результаты представлены в таблице.

Пример 2

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 70%(вес) кварцевых волокон ТКВ со средним диаметром 3-5 мкм, 25%(вес) волокон на основе оксида алюминия, 5%(вес) котонизированных льняных волокон, в качестве связующего использовали раствор сульфоэфира целлюлозы концентрацией 3%. Материал термообработан при температуре 100°С и определены его свойства аналогично примеру 1. Свойства материала представлены в таблице.

Пример 3

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 85%(вес) кварцевых волокон ТКВ средним диаметром 2-4 мкм, 15%(вес) котонизированных льняных волокон и пропитан раствором сульфоэфира целлюлозы концентрацией 0,01% в качестве связующего, а затем термообработан при температуре 120°С. Свойства материала представлены в таблице.

Пример 4

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 60%(вес) кварцевых волокон ТКВ средним диаметром 2-4 мкм, 28%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм, 12%(вес) котонизированных льняных волокон и пропитан раствором карбоксиметилцеллюлозы концентрацией 0,01%, затем термообработан при температуре 70°С. Свойства материала представлены в таблице.

Пример 5

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 40%(вес) кремнеземных волокон диаметром 3-4 мкм, 55%(вес) базальтовых волокон материала марки БУТВ диаметром 3-5 мкм, 5%(вес) котонизированных льняных волокон и пропитан раствором карбоксиметилцеллюлозы концентрацией 3% в качестве связующего, затем термообработан при температуре 120°С. Свойства материала представлены в таблице.

Пример 6

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 70%(вес) кварцевых волокон ТКВ диаметром 2-4 мкм, 15%(вес) муллитовых волокон диаметром 1-3 мкм и 15%(вес) котонизированных льняных волокон. В качестве связующего пропитан эмульсией поливинилацетата концентрацией 5%, термообработан при 110°С. Свойства материала представлены в таблице.

Пример 7

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из 90%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм и 10%(вес) котонизированных льняных волокон, пропитан эмульсией поливинилацетата концентрацией 15%, термообработан при 115°С. Свойства материала представлены в таблице.

Пример 8

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из 89%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм, 5%(вес) котонизированных льняных волокон, 1%(вес) термопластичных эфирных волокон и термообработан при 150°С. Свойства материала представлены в таблице.

Пример 9 (по прототипу)

Материал изготовлен из смеси 99%(вес) кварцевого волокна диаметром 0,5-3,0 мкм и 1%(вес) лиственной целлюлозы, полученной из березовой древесины, получен по бумажной технологии и испытан аналогично примерам 1-5.

Все полученные материалы были испытаны на гибкость по ГОСТ17177, был определен удельный вес материалов.

Характеристики представлены в таблице.

Из таблицы видно, что предложенный материал имеет низкую плотность (менее 15 кг/м3), очень высокую гибкость (до 20 мм) и будет востребован в качестве легковесной самолетной теплоизоляции.

Источник поступления информации: Роспатент

Показаны записи 131-140 из 371.
12.01.2017
№217.015.5e2f

Теплостойкое эпоксидное связующее для изготовления изделий методом пропитки под давлением

Изобретение относится к теплостойким эпоксидным связующим для изготовления методом пропитки под давлением изделий из полимерных композиционных материалов, применяемых в авиакосмической технике. Связующее содержит, мас.%: эпоксидную полифункциональную смолу...
Тип: Изобретение
Номер охранного документа: 0002590563
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f9c

Способ удаления покрытия с металлической подложки

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при ремонте лопаток и других деталей турбин. Способ включает обработку в электролите, содержащем неорганическую аммонийную соль и добавку водорастворимого вещества, при этом...
Тип: Изобретение
Номер охранного документа: 0002590457
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ed

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей горячего тракта газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002588949
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.678a

Сплав с высокотемпературным эффектом памяти формы

Изобретение относится к области металлургии, а именно к сплавам на основе железа, обладающим высокотемпературным эффектом памяти формы, и может быть использовано для изготовления высокотемпературных термочувствительных элементов изделий, применяемых в авиационной и атомной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002591933
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68ff

Способ получения износостойкого покрытия

Изобретение относится к области металлургии, а именно к способам получения покрытий с использованием магнетронного распыления металлов, и может быть использовано для получения износостойких покрытий металлических деталей трения, в частности для компрессора газотурбинных двигателей и установок....
Тип: Изобретение
Номер охранного документа: 0002591932
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.69be

Теплостойкая клеевая композиция

Изобретение относится к области теплостойких клеевых композиций холодного отверждения. Термостойкая клеевая композиция холодного отверждения по изобретению включает эпоксикремнийорганическую смолу и смесь изомеров γ- и β-аминопропилтриэтоксисилана и трис-[2,4,6-(диметиламинометил)фенол]. При...
Тип: Изобретение
Номер охранного документа: 0002591961
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6c82

Жаропрочный сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию жаропрочных сплавов на основе титана, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов и деталей. Жаропрочный сплав на основе титана содержит, мас.%: алюминий 10,5-12,5; ниобий 38,5-42,0; молибден...
Тип: Изобретение
Номер охранного документа: 0002592657
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6fca

Металлополимерная композиция

Изобретение относится к области наполненных полимерных композиций на основе эпоксидных олигомеров для выравнивания внешней поверхности вертолетов и самолетов. Металлополимерная композиция включает эпоксикремнийорганическую смолу с молекулярной массой от 350 до 420 (90,0-110,0 мас.ч.),...
Тип: Изобретение
Номер охранного документа: 0002596762
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7186

Способ получения магнитотвердого материала

Изобретение относится к области металлургии и может быть использовано при получении магнитотвердого материала на основе системы редкоземельный металл-железо-кобальт-бор, который используют при изготовлении магнитов для создания навигационных приборов. В способе осуществляют загрузку железа...
Тип: Изобретение
Номер охранного документа: 0002596563
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7489

Высокопрочный эпоксидный пленочный клей

Изобретение относится к области высокопрочных эпоксидных клеев повышенной теплостойкости конструкционного назначения. Эпоксидная клеевая композиция для соединения металлов и/или ПКМ включает эпоксидную основу и отвердитель. В качестве эпоксидной основы содержит смесь эпоксидной диановой смолы с...
Тип: Изобретение
Номер охранного документа: 0002597912
Дата охранного документа: 20.09.2016
Показаны записи 131-140 из 344.
12.01.2017
№217.015.5e2f

Теплостойкое эпоксидное связующее для изготовления изделий методом пропитки под давлением

Изобретение относится к теплостойким эпоксидным связующим для изготовления методом пропитки под давлением изделий из полимерных композиционных материалов, применяемых в авиакосмической технике. Связующее содержит, мас.%: эпоксидную полифункциональную смолу...
Тип: Изобретение
Номер охранного документа: 0002590563
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f9c

Способ удаления покрытия с металлической подложки

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при ремонте лопаток и других деталей турбин. Способ включает обработку в электролите, содержащем неорганическую аммонийную соль и добавку водорастворимого вещества, при этом...
Тип: Изобретение
Номер охранного документа: 0002590457
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ed

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей горячего тракта газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002588949
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.678a

Сплав с высокотемпературным эффектом памяти формы

Изобретение относится к области металлургии, а именно к сплавам на основе железа, обладающим высокотемпературным эффектом памяти формы, и может быть использовано для изготовления высокотемпературных термочувствительных элементов изделий, применяемых в авиационной и атомной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002591933
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68ff

Способ получения износостойкого покрытия

Изобретение относится к области металлургии, а именно к способам получения покрытий с использованием магнетронного распыления металлов, и может быть использовано для получения износостойких покрытий металлических деталей трения, в частности для компрессора газотурбинных двигателей и установок....
Тип: Изобретение
Номер охранного документа: 0002591932
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.69be

Теплостойкая клеевая композиция

Изобретение относится к области теплостойких клеевых композиций холодного отверждения. Термостойкая клеевая композиция холодного отверждения по изобретению включает эпоксикремнийорганическую смолу и смесь изомеров γ- и β-аминопропилтриэтоксисилана и трис-[2,4,6-(диметиламинометил)фенол]. При...
Тип: Изобретение
Номер охранного документа: 0002591961
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6c82

Жаропрочный сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию жаропрочных сплавов на основе титана, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов и деталей. Жаропрочный сплав на основе титана содержит, мас.%: алюминий 10,5-12,5; ниобий 38,5-42,0; молибден...
Тип: Изобретение
Номер охранного документа: 0002592657
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6fca

Металлополимерная композиция

Изобретение относится к области наполненных полимерных композиций на основе эпоксидных олигомеров для выравнивания внешней поверхности вертолетов и самолетов. Металлополимерная композиция включает эпоксикремнийорганическую смолу с молекулярной массой от 350 до 420 (90,0-110,0 мас.ч.),...
Тип: Изобретение
Номер охранного документа: 0002596762
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7186

Способ получения магнитотвердого материала

Изобретение относится к области металлургии и может быть использовано при получении магнитотвердого материала на основе системы редкоземельный металл-железо-кобальт-бор, который используют при изготовлении магнитов для создания навигационных приборов. В способе осуществляют загрузку железа...
Тип: Изобретение
Номер охранного документа: 0002596563
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7489

Высокопрочный эпоксидный пленочный клей

Изобретение относится к области высокопрочных эпоксидных клеев повышенной теплостойкости конструкционного назначения. Эпоксидная клеевая композиция для соединения металлов и/или ПКМ включает эпоксидную основу и отвердитель. В качестве эпоксидной основы содержит смесь эпоксидной диановой смолы с...
Тип: Изобретение
Номер охранного документа: 0002597912
Дата охранного документа: 20.09.2016
+ добавить свой РИД