×
13.02.2018
218.016.2052

Результат интеллектуальной деятельности: Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг. Перед термодиффузионным водородным насыщением и вакуумным отжигом на поверхность имплантата диффузионной сваркой наносят пористое покрытие путем приварки при температуре 850-950°С к поверхности имплантата из титановых сплавов волокон из титанового сплава, водородное насыщение проводят при температуре 600-650°С до концентрации водорода 0,5-0,8 мас. %, а последующий вакуумный отжиг - до концентрации водорода не более 0,008 мас. %. Повышается усилие среза покрытия с монолитной основы при сохранении ее структуры и свойств. 3 з.п. ф-лы, 1 ил., 1 табл., 8 пр.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием.

Известно /Biomaterials, 2006, №27, р, 2651-2670/, что для обеспечения фиксации монолитных имплантатов (элементов эндопротезов крупных суставов, имплантатов для остеосинтеза и т.п.) в кости используются остеоинтегрирующие покрытия, представляющие собой пористый материал из биологически инертных сплавов, чаще всего титановых. Существует ряд технологий получения такого покрытия на монолитных образцах - спекание гранул или порошка, вакуумное плазменное напыление, послойное 3D прототипирование, сварка (электроточечная или диффузионная) проволочной сетки и др. Все эти способы требуют применения высоких (1100-1300°С) температур обработки имплантата, что для большинства титановых сплавов, применяемых в медицине, приводит к огрублению структуры (увеличение размеров зерна и других структурных составляющих) и соответствующему ухудшению механических свойств монолитного материала и характеристик работоспособности имплантата.

Однако снижение температур формирования пористого покрытия приводит к уменьшению его прочностных характеристик и прочности сцепления с основой, что чревато выкрашиванием частиц материала покрытия в процессе эксплуатации и развитию металлоза окружающих имплантат тканей, а также повышенного износа шарнирных элементов эндопротезов суставов.

Известен способ получения изделий из титановых сплавов, включающий термоводородную обработку с введением водорода до концентрации 0,5-0,9% по массе при температуре 700-850°С, последующий отжиг в вакууме при температуре 550-700°C с выдержкой 4-20 часов до концентрации водорода не более 0,01 мас. % и нанесение покрытия (Патент РФ №2338811), принятый за прототип.

Однако этот способ получения изделий, в том числе и медицинских, может быть использован для повышения износостойкости подвижных частей эндопротеза и не оптимален для формирования остеоинтеграционного пористого покрытия.

Задачей настоящего изобретения является разработка способа получения высокопористого остеоинтеграционного покрытия на монолитном имплантате из титанового сплава при сохранении высокого уровня характеристик работоспособности последнего.

Техническим результатом изобретения является повышение усилий среза покрытия с монолитной основы при сохранении ее структуры и свойств.

Поставленная задача решается за счет того, что способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг, причем перед термодиффузионным водородным насыщением и вакуумным отжигом на поверхность имплантата диффузионной сваркой наносят пористое покрытие путем приварки при температуре 850-950°С к поверхности имплантата из титановых сплавов волокон из титанового сплава, водородное насыщение проводят при температуре 600-650°С до концентрации водорода 0,5-0,8 мас. %, а последующий вакуумный отжиг - до концентрации водорода не более 0,008 мас. %.

Вакуумный отжиг может быть проведен при температуре 600-650°С в течение 10-12 часов, чтобы обеспечить снижение содержания водорода до концентрации не более 0,008% (концентрация, исключающая охрупчивание материала).

Вакуумный отжиг может быть проведен ступенчато - вначале при температуре 600-650°С в течение 0,5-1,0 часа, затем при температуре 750-850°С в течение 2-2,5 часов, также обеспечивая снижение содержания водорода до концентрации не более 0,008%.

Перед вакуумным отжигом имплантат с покрытием охлаждают до комнатной температуры.

Температура диффузионной сварки выбиралась ниже температуры АС3 сплава основы. Это связано с тем, что при температуре выше АС3 (в однофазной β-области) происходит интенсивный рост β-зерна, а после охлаждения от этих температур β-фаза полностью или частично распадается с образованием крупных пластин α-фазы. В результате формируется грубая структура титанового сплава, значительно ухудшающая механические свойства материала по сравнению с исходной структурой полуфабриката, из которого имплантат изготовлен. Такой имплантат уже не может обладать высокими характеристиками работоспособности, которые предъявляются к медицинским изделиям.

Титановые сплавы, используемые в медицине, относятся к α, псевдо-α и α+β типам титановых сплавов (ВТ1-0, ВТ6) и имеют температуру АС3 от 880 до 1000°С. Так как диффузионная сварка должна осуществляться при температурах на 30-50°С ниже АС3, то ее необходимо проводить в диапазоне 850°-950°С, причем чем ниже температура АС3 сплава, тем ниже должна быть температура диффузионной сварки.

В местах механического контакта сплава основы и покрытия термоводородная обработка обеспечивает реализацию их фазовой перекристаллизации, сопровождающейся фазовым наклепом и формированием новых общих структурных составляющих, т.е. возникновением физического контакта.

Фазовая перекристаллизация протекает как при введении в материал водорода, так и при его удалении в процессе вакуумного отжига.

В то же время в процессе обработки в структуре сплава основы должна частично оставаться исходная α-фаза, которая будет препятствовать росту β-зерна и, таким образом сохраняться исходная мелкозернистая структура материала. В связи с этим концентрация и температура введения водорода ограничены температурно-концентрационной границей однофазной β-области (температурой АС3 водородсодержащего сплава).

Однако слишком низкие концентрации водорода не позволяют достигнуть необходимой степени фазовой перекристаллизации, а значительное уменьшение температуры наводороживания резко увеличивает время выдержки, делая процесс экономически не эффективным. Поэтому оптимальной можно считать температуру наводороживания 600-650°С, а вводимую концентрацию водорода 0,5-0,8% по массе. При этих условиях сплавы типа ВТ1-0 и ВТ6 имеют в структуре 10-20% исходной α-фазы, что позволяет сохранить мелкозернистую структуру материала.

В процессе вакуумного отжига наводороженного материала необходимо также сохранять некоторое количество исходной α-фазы. Поэтому температура вакуумного отжига, хотя бы на первой стадии, в течение 0,5-1 часа должна быть не выше 650°С. При этих условиях сохраняется исходная α-фаза, а частичное удаление водорода приводит к повышению температуры АС3 сплава (до 850-950°С). Так как удаление водорода до концентрации не более 0,008 мас. % при температуре 650°С требует слишком много времени (10-12 часов), то после выдержки при 650°С в течение 0,5-1 часа температуру вакуумного отжига можно повысить до 750-850°С, при которых удаление водорода до указанной концентрации происходит за 2-2,5 часа.

Стадии наводороживания и вакуумного отжига могут быть выполнены как в одном цикле без промежуточного охлаждения изделия до комнатной температуры, так и в два цикла - с охлаждением. В первом случае снижается риск поводок и коробления имплантатов и частичного разрушения покрытия, так как не реализуется при охлаждении эвтектоидное превращение, сопровождающееся образованием хрупких гидридов со значительным объемным эффектом.

Однако при этом полностью не используются возможности фазовой перекристаллизации материала и не достигаются наиболее высокие характеристики прочности, как во втором случае. Поэтому без промежуточного охлаждения желательно обрабатывать крупногабаритные изделия сложной формы, а с промежуточным охлаждением - мелкие, с простой симметричной формой.

Примеры использования изобретения

Для проверки предложенного способа были проведены эксперименты, в которых пористое покрытие из волокон со средним поперечным размером 40 мкм, полученных высокоскоростной закалкой расплава, и проволоки диаметром 1 мм, изготовленной по стандартной технологии из сплава ВТ1-0, прессовалось в виде прямоугольников размером 80×20×2,5-3 мм и диффузионно приваривалось к листам из титановых сплавов ВТ1-0 и ВТ6 толщиной 2,5 мм. Объемная пористость покрытия составляла 50-60%. Заготовки подвергали термоводородной обработке по различным режимам. Обработанные образцы подвергались испытаниям на срез покрытия, а также металлографическому анализу. Режимы обработки и результаты испытаний приведены в Таблице.

Как показали проведенные эксперименты, обработка модельных образцов по заявляемым режимам обеспечивает достаточно высокую адгезионную прочность соединения основа - покрытие. Выход режимов за заявляемые пределы снижает ее более чем в два раза. При этом структура материала основы после обработки по заявляемым режимам сохраняется мелкодисперсной и соответствует исходной (Рис. 1а), в отличие от образцов, обработанных по другим режимам (Рис. 1б).

Таким образом, технический результат, выражающийся в повышении усилий среза покрытия при сохранении структуры и свойств основы, получен.

Задача изобретения - получение высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов - решена.


Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов
Источник поступления информации: Роспатент

Показаны записи 11-20 из 29.
27.06.2014
№216.012.d7bf

Способ получения композиционного материала al-alo

Способ получения композиционного материала Аl-АlO относится к технологии композиционных материалов - керметов и может быть использовано для получения уплотнительных элементов, применяемых для плотного сопряжения деталей и конструкций высокотемпературных энергетических установок. В соответствии...
Тип: Изобретение
Номер охранного документа: 0002521009
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dd7d

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели по пористости и прочности при невысокой теплопроводности (теплоизоляция, фильтры для очистки жидких и газовых сред,...
Тип: Изобретение
Номер охранного документа: 0002522487
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7e

Композиционный топливный модельный материал с инертной пористой металлической матрицей и способ его изготовления

Изобретение относится к композиционному топливному модельному материалу, состоящему из инертной к облучению матрицы и частиц материала, моделирующего ядерный делящийся материал (младшие актиниды). Материал характеризуется тем, что инертная матрица выполнена из пористого металлического...
Тип: Изобретение
Номер охранного документа: 0002522744
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e74a

Сплав на основе алюминида титана и способ обработки заготовок из него

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе алюминида титана TiAl, и может быть использовано для изготовления деталей газотурбинных двигателей, силовых установок и агрегатов авиационного, топливно-энергетического и морского назначения. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002525003
Дата охранного документа: 10.08.2014
27.03.2015
№216.013.35da

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления пористых изделий для высокотемпературной теплоизоляции или теплозащиты, носителей катализаторов и фильтров очистки жидких и газовых сред. Для получения...
Тип: Изобретение
Номер охранного документа: 0002545270
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.389e

Способ получения композиционного материала alo-al

Изобретение относится к керметам, а именно к получению композиционного материала AlO-Al. Сплав Al-Mg с содержанием магния 15-25 мас.% обрабатывают водным раствором едкого натра до образования в маточном растворе осадка в виде гранул. Осадок отделяют от маточного раствора и отмывают водой до...
Тип: Изобретение
Номер охранного документа: 0002545982
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fec

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002547852
Дата охранного документа: 10.04.2015
27.07.2015
№216.013.66fd

Способ протезирования пульпозного ядра межпозвонкового диска

Изобретение относится к медицине, а именно к нейрохирургии. Проводят удаление пульпозного ядра, секвестрэктомию и вводят в денуклеированный диск имплантат. В качестве имплантата используют нитиноловую нить, сложенную в виде сферического клубка, диаметр которого на 4-6 мм больше высоты...
Тип: Изобретение
Номер охранного документа: 0002557918
Дата охранного документа: 27.07.2015
27.02.2016
№216.014.c167

Способ получения интерметаллидных сплавов на основе алюминида титана с повышенным содержанием ниобия

Изобретение относится к области металлургии, а именно к способам выплавки титановых сплавов и может быть использовано при производстве полуфабрикатов, предназначенных для изготовления деталей газотурбинных двигателей, силовых установок, агрегатов авиационного, топливно-энергетического и...
Тип: Изобретение
Номер охранного документа: 0002576288
Дата охранного документа: 27.02.2016
10.05.2016
№216.015.3d37

Способ получения композиционного материала alo-al

Изобретение относится к технологии композиционных материалов - керметов и может быть использовано для получения прочных износостойких изделий, работающих в трибосопряжениях в условиях самосмазывания. Для изготовления композиционного материала AlO-Al получали гранулированную шихту, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002583966
Дата охранного документа: 10.05.2016
Показаны записи 11-20 из 39.
27.03.2015
№216.013.35da

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления пористых изделий для высокотемпературной теплоизоляции или теплозащиты, носителей катализаторов и фильтров очистки жидких и газовых сред. Для получения...
Тип: Изобретение
Номер охранного документа: 0002545270
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.389e

Способ получения композиционного материала alo-al

Изобретение относится к керметам, а именно к получению композиционного материала AlO-Al. Сплав Al-Mg с содержанием магния 15-25 мас.% обрабатывают водным раствором едкого натра до образования в маточном растворе осадка в виде гранул. Осадок отделяют от маточного раствора и отмывают водой до...
Тип: Изобретение
Номер охранного документа: 0002545982
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fec

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002547852
Дата охранного документа: 10.04.2015
27.07.2015
№216.013.66fd

Способ протезирования пульпозного ядра межпозвонкового диска

Изобретение относится к медицине, а именно к нейрохирургии. Проводят удаление пульпозного ядра, секвестрэктомию и вводят в денуклеированный диск имплантат. В качестве имплантата используют нитиноловую нить, сложенную в виде сферического клубка, диаметр которого на 4-6 мм больше высоты...
Тип: Изобретение
Номер охранного документа: 0002557918
Дата охранного документа: 27.07.2015
27.02.2016
№216.014.c167

Способ получения интерметаллидных сплавов на основе алюминида титана с повышенным содержанием ниобия

Изобретение относится к области металлургии, а именно к способам выплавки титановых сплавов и может быть использовано при производстве полуфабрикатов, предназначенных для изготовления деталей газотурбинных двигателей, силовых установок, агрегатов авиационного, топливно-энергетического и...
Тип: Изобретение
Номер охранного документа: 0002576288
Дата охранного документа: 27.02.2016
10.05.2016
№216.015.3d37

Способ получения композиционного материала alo-al

Изобретение относится к технологии композиционных материалов - керметов и может быть использовано для получения прочных износостойких изделий, работающих в трибосопряжениях в условиях самосмазывания. Для изготовления композиционного материала AlO-Al получали гранулированную шихту, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002583966
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4cbe

Способ термоводородной обработки полуфабрикатов и изделий из пористого материала на основе титана и его сплавов

Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг. Термодиффузионное насыщение водородом ведут при температуре...
Тип: Изобретение
Номер охранного документа: 0002594548
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6a52

Способ получения композиционного материала alo-al

Изобретение относится к технологии композиционных материалов и может быть использовано для получения прочных, износостойких изделий, работающих в трибосопряжениях в условиях воздействия статических и динамических нагрузок. Для получения композита AlO-Al алюминиевый порошок (ПАП-2), содержащий...
Тип: Изобретение
Номер охранного документа: 0002592917
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.aaa5

Устройство для остеосинтеза

Изобретение относится к медицине. Устройство для остеосинтеза из материала с памятью формы представляет собой скобку, которая содержит перемычку и две ножки, причем концы ножек разрезаны вдоль оси по меньшей мере на две равные части, длина разреза не более чем в 6,3 раза больше поперечного...
Тип: Изобретение
Номер охранного документа: 0002611907
Дата охранного документа: 01.03.2017
+ добавить свой РИД