×
20.01.2018
218.016.1e34

Результат интеллектуальной деятельности: ИЗМЕНЯЕМОЕ РЕГУЛИРОВАНИЕ ПРЕДЕЛЬНОЙ МОЩНОСТИ ГАЗОВЫХ ТУРБИН

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к способу эксплуатации газотурбинной установки, газотурбинной установке и носителю данных. В способе предусмотрены этап определения, по меньшей мере, одного эксплуатационного параметра газотурбинной установки и этап определения предельной величины мощности в зависимости от, по меньшей мере, одного определенного эксплуатационного параметра, причем, по меньшей мере, один эксплуатационный параметр газотурбинной установки включает в себя давление окружающей среды и увеличение предельной величины мощности происходит при повышении давления окружающей среды. Технический результат изобретений - повышение точности и гибкости согласования предельной величины мощности для регулирования газотурбинной установки с изменяющимися условиями окружающей среды. 3 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к способу эксплуатации газотурбинной установки и эксплуатируемой в соответствии со способом газотурбинной установке.

Предельная мощность газовой турбины представляет собой мощность, при которой возможна эксплуатация газовой турбины в максимальном режиме и которую определяют механической целостностью отдельных конструктивных элементов газовой турбины. При этом определяющим для предельной мощности газовой турбины является конструктивный элемент, который первым достиг границы своей механической допустимой нагрузки. В типичной ситуации в случае этих конструктивных элементов речь идет о задних в направлении главного потока лопатках турбины, которые вследствие своего радиуса и обусловленных этим более значительных центробежных сил подвергаются воздействию наибольшей нагрузки.

Для достижения максимально высокого выхода энергии газовой турбины ее эксплуатируют при максимальной близости к предельной мощности. Мгновенную мощность обычно косвенно определяют на электрических выходах приводимого в действие газовой турбиной электрического генератора газотурбинной установки посредством измерения токов, напряжений и по мере необходимости фазового угла, поскольку предполагается, что мгновенная выходная мощность электрического генератора непосредственно зависит от мгновенной мощности.

В результате колебаний эксплуатационных параметров мгновенная мощность газовой турбины может кратковременно достигать установленной для газовой турбины предельной мощности или превышать ее. В этом случае производят дросселирование газовой турбины для обеспечения ее механической целостности.

Далее, например, из заявки US 2013/227954 А1 или US 6718771 B1 известно также, что возможно изменяемое определение величины предельной мощности в зависимости от окружающей температуры, причем при уменьшающихся температурах происходит возрастание величины предельной мощности. Однако при такой зависимости проблематичным является то, что согласование предельной мощности с изменяющимися условиями окружающей среды может быть произведено лишь в ограниченном объеме.

Задачей изобретения является создание улучшенного способа эксплуатации газотурбинной установки, в частности такого способа, который может быть согласован с другими изменяющимися условиями окружающей среды.

В связи с этим в изобретении предлагается способ эксплуатации газотурбинной установки с газовой турбиной и электрическим генератором, приводимым в действие газовой турбиной. Способ содержит, по меньшей мере, следующие этапы:

- определение мгновенной мощности газотурбинной установки;

- сравнение определенной мгновенной мощности с предельной величиной мощности; и

- ограничение мгновенной мощности, если сравнение показывает, что определенная мгновенная мощности достигла предельного значения мощности или превысила его. В соответствии с изобретением при этом предусмотрены этап определения, по меньшей мере, одного эксплуатационного параметра газотурбинной установки и этап определения предельной величины мощности в зависимости от, по меньшей мере, одного распознанного эксплуатационного параметра.

К тому же в соответствии с изобретением предельная величина мощности должна быть увеличена в случае повышения давления окружающей среды или уменьшена в случае уменьшения давления окружающей среды. Изменения давления окружающей среды влияют, как и изменения температуры окружающей среды, на массовый поток компрессора. При этом также существует возможность определения массового потока компрессора на основании измерений и/или расчетов, по мере необходимости в зависимости от температуры окружающей среды и давления окружающей среды, в качестве эксплуатационного параметра газовой турбины и выбора предельной величины мощности в зависимости от этого массового потока. Для этого по мере необходимости могут быть учтены другие эксплуатационные параметры, например давление на выходе компрессора или температура на выходе компрессора.

К тому же изобретение обладает тем преимуществом, что более высокого выхода энергии достигают при использовании изменяемой предельной мощности для регулирования газотурбинной установки. При этом согласно изобретению ограничение посредством измеренной на генераторе выходной электрической мощности позволяет сделать вывод непосредственно о критической мгновенной нагрузке газовой турбины, которая определена техническими параметрами потока и вращательно-механическими особенностями в газовой турбине, не для каждого эксплуатационного состояния. Так, изменения эксплуатационных параметров газовой турбины могут допускать повышенную мгновенную мощность газовой турбины, которая при иных эксплуатационных условиях представляла бы собой недопустимо высокую нагрузку. Фиксированная величина предельной нагрузки, которая в одинаковой мере пригодна для использования при всех эксплуатационных состояниях газовой турбины, должна быть выбрана настолько консервативно, чтобы обеспечивать механическую целостность газовой турбины для всех эксплуатационных состояний. Соответствующее изобретению использование изменяемой величины предельной мощности, которую определяют в зависимости от фактически присутствующего в данный момент времени эксплуатационного параметра, допускает, однако, в определенных ситуациях выход мгновенной мощности газотурбинной установки за пределы такой консервативно выбранной предельной величины мощности, за счет чего возрастает общий выход энергии и, следовательно, рентабельность газотурбинной установки. В частности, предусмотрено согласование предельной величины мощности с другими изменяющимися условиями окружающей среды, так что может быть осуществлено более точное или более гибкое согласование.

Предпочтительно, по меньшей мере, один эксплуатационный параметр газотурбинной установки содержит, далее, по меньшей мере, один выбранный эксплуатационный параметр температуры окружающей среды, общего времени работы газовой турбины или общей выдачи энергии газотурбинной установки. В случае этих эксплуатационных параметров речь идет о таких параметрах, которые оказывают непосредственное влияние на мгновенную мощность газовой турбины (температура окружающей среды) и воздействуют на механический предел нагрузки газовой турбины (общее время работы и общая выдача энергии). По мере необходимости эти эксплуатационные параметры могут быть определены с помощью датчиков, например термоэлементов или датчиков давления. Альтернативно эти эксплуатационные параметры могут быть, однако, также привлечены вместо эксплуатационного параметра давления окружающей среды для определения предельной величины мощности.

Предельная величина мощности уменьшается, если общее время работы газовой турбины превышает заранее определенную пороговую величину. Эта форма исполнения принимает во внимание тот факт, что нагрузка относительно измеренной мощности на генераторе возрастает вместе со старением. В соответствии с этим в случае в остальном схожих в конструктивном отношении газовых турбин с различным суммированным временем эксплуатации для газовых турбин с меньшим временем эксплуатации могут быть выбраны более высокие предельные величины мощности, нежели для других. При этом изменяется не столько предельная нагрузка на конструктивные элементы, а в большей степени выход энергии при той же механической предельной нагрузке. Старение может быть задано в виде специфической плавающей характеристики или в виде расчета на основании эксплуатационных параметров. Это позволяет выбирать пригодные предельные величины мощности также после ремонта или переделки газовых турбин, в случае которых были заменены или подвергнуты ремонту отдельные конструктивные элементы газовой турбины.

Мгновенная мощность газотурбинной установки может быть определена посредством определения электрической мощности, выдаваемой электрическим генератором газотурбинной установки. Однако альтернативно возможно также определение мгновенной мощности газотурбинной установки на основании определения мгновенной мощности газовой турбины газотурбинной установки. Определение электрической мощности на выходе генератора газотурбинной установки является легко реализуемым и применительно ко многим существующим газотурбинным установкам возможно без внесения конструктивного изменения. Использование мгновенной мощности турбины обладает, напротив, тем преимуществом, что возможен непосредственный отвод сил и нагрузок, фактически действующих на отдельные конструктивные элементы газовой турбины, так что непосредственно вытекают пригодные предельные величины мощности. Таким образом, регулирование можно осуществлять непосредственно с привязкой к новой регулируемой величине, а именно мгновенной мощности газовой турбины, которую определяют посредством математического моделирования на основе определенных с помощью измерительной техники и/или известных в системе эксплуатационных условий. При этом мгновенная мощность турбины может быть определена также с учетом соответствующих мощностей различных каскадов турбины, которые также могут участвовать в регулировании в качестве регулируемых величин.

Мгновенная мощность может быть, ограничена, например, путем ограничения массового потока компрессора газовой турбины. Это может быть достигнуто с помощью различных мер, таких как, например, регулировка ряда изменяемых направляющих лопаток компрессора или при использовании способа влажного хода компрессора за счет уменьшения количества впрыскиваемой в компрессор воды.

Второй аспект изобретения относится к газотурбинной установке с газовой турбиной, соединенным с газовой турбиной электрическим генератором и соединенным с газовой турбиной и электрическим генератором блоком управления, выполненным для осуществления соответствующего изобретению способа.

Кроме того, изобретение относится к носителю данных, считывание с которого может быть произведено компьютером, с программным кодом, который может быть выполнен компьютером и который, поступая от блока управления такой газотурбинной установки, осуществляет соответствующий изобретению способ. Существующие инсталлированные элементы газотурбинных установок могут быть с помощью актуализации их управляющего программного обеспечения модифицированы таким образом, что обеспечивают возможность использования изобретения.

В последующем изобретение поясняется более подробно на основании чертежей примеров исполнения. Фигуры показывают:

фиг. 1 - показывает соответствующую изобретению газотурбинную установку;

фиг. 2 - показывает пример газотурбинной установки в частичном продольном сечении;

фиг. 3 - показывает первую диаграмму, которая поясняет мощность газовой турбины в качестве функции температуры, как это приблизительно известно из уровня техники; и

фиг. 4 - показывает вторую диаграмму, которая поясняет мощность газовой турбины опять же в качестве функции температуры.

Фиг. 1 показывает соответствующую изобретению газотурбинную установку 1, содержащую газовую турбину 100, которая через вал 300 соединена с электрическим генератором 200 и приводит его в действие. Электрический генератор 200 преобразует предоставленную газовой турбиной 100 энергию вращения в электрическую энергию и выдает ее через электрические присоединения.

Фиг. 2 показывает в частичном продольном сечении пример исполнения газовой турбины, которая может быть использована в соответствующей изобретению газотурбинной установке.

Газовая турбина 100 содержит в своем внутреннем пространстве укрепленный с возможностью вращения вокруг оси 102 вращения ротор 103 с валом 101, который называют также рабочим колесом турбины.

Вдоль ротора 103 поочередно следуют всасывающий корпус 104, компрессор 105, имеющая, например, тороидальную форму камера 110 сгорания, в частности кольцевая камера сгорания с несколькими коаксиально расположенными горелками 107, турбина 108 и корпус 109 отвода отработавших газов. Перед камерой 110 сгорания в имеющем кольцевую форму канале 111 горячего газа турбины происходит снижение давления горячего газа. Там, например, четыре установленных один за другим каскада 112 турбины образуют турбину 108.

Каждый каскад 112 турбины образован, например, двумя ободами лопаток. При рассмотрении в направлении потока рабочей среды 113 в канале 111 горячего газа за рядом 115 направляющих лопаток следует ряд 125, образованный рабочими лопатками 120. Рабочие лопатки 120 представляют собой обычно те конструктивные элементы, которые подвергаются наибольшей нагрузке, причем нагрузка на рабочие лопатки 120 возрастает в направлении потока рабочей среды 113 вследствие возрастающих радиусов установки. По этой причине эти конструктивные элементы решающим образом определяют предельную величину нагрузки.

Направляющие лопатки 130 укреплены на внутреннем корпусе 138 статора 143, в то время как рабочие лопатки 120 одного ряда 125 расположены, например, с помощью диска 133 турбины на роторе 103. К ротору 103 присоединен электрический генератор (не изображен).

В процессе эксплуатации газовой турбины 100 компрессор 105 всасывает воздух 135 через всасывающий корпус 104 и сжимает его. Подготовленный на расположенном на конце компрессора 105 на стороне турбины сжатый воздух подводят к горелкам 107 и смешивают там с топливом. Затем смесь сжигают в камере 110 сгорания с образованием рабочей среды 113. Оттуда рабочая среда 113 протекает вдоль канала 111 горячего газа мимо него к направляющим лопаткам 130 и рабочим лопаткам 120. На рабочих лопатках 120 происходит разряжение рабочей среды 113 с передачей импульса, в результате чего рабочие лопатки 120 приводят в действие ротор 103, который приводит в действие присоединенную к нему рабочую машину.

Подвергающиеся воздействию горячей рабочей среды 113 конструктивные элементы подвергаются во время эксплуатации газовой турбины 100 термическим нагрузкам. Наибольшей термической нагрузке подвергаются направляющие лопатки 130 и рабочие лопатки 120 рассматриваемого в направлении потока рабочей среды 113 первого каскада 112 турбины наряду с жаропрочными элементами, которые облицовывают кольцевую камеру 110 сгорания.

Направляющая лопатка 130 содержит обращенный к внутреннему корпусу 138 турбины 108 хвост лопатки (здесь не изображен) и расположенную напротив хвоста лопатки головную часть лопатки. Головная часть лопатки обращена к ротору 103 и укреплена на крепежном кольце 140 статора 143.

Фиг. 3 показывает первую диаграмму, которая поясняет мощность газовой турбины в качестве функции температуры, как это приблизительно известно из уровня техники. При этом электрическая выдаваемая мощность газотурбинной установки показана сплошной линией, а мощность газовой турбины показана в качестве штриховой линии над температурой Т окружающей среды, причем обе названных мощности нормированы применительно к их соответствующей предельной величине мощности.

В примере по фиг. 3 эксплуатацию газотурбинной установки осуществляют в соответствии с обычным способом. Выясняется, что для высоких температур вследствие уменьшенной плотности окружающего воздуха и уменьшенного в результате этого массового потока компрессора газовой турбины электрическая мощность на выходе газотурбинной установки остается ниже установленной границы и с увеличением температуры окружающего воздуха продолжает снижаться. Мощность газовой турбины, которая определяет фактическую нагрузку на участок газовой турбины, показывает соответствующая характеристика. При снижении температур окружающей среды происходит повышение плотности всасываемого компрессором воздуха, так что компрессор может предоставить в распоряжение газовой турбины более значительный массовый поток, который обуславливает соответствующим образом возрастание мощности газовой турбины, а также электрической мощности на выходе. При достижении электрической мощностью на выходе заранее определенной максимальной величины, что в показанном примере происходит при температуре Т0 окружающей среды, происходит ее ограничение и поддержание на уровне, максимально близком к максимальной величине, что может быть произведено посредством управляющих манипуляций компрессором. При температуре Т0 окружающей среды также и мощность газовой турбины достигает своей максимально допустимой величины. При дальнейшем снижении температуры окружающего воздуха электрическая мощность на выходе поддерживается неизменной, разумеется, газовая турбина может достичь этой электрической мощности на выходе при меньшей мощности газовой турбины. Это объясняется тем, что энергия вращения, отобранная на участке турбины из горячего потока газа, возникшего при сгорании топлива, вновь частично выдается на компрессор, который сжимает дутьевой воздух. Поскольку вследствие снижающихся температур и уменьшающегося массового потока компрессора необходимо использование меньшей производительности компрессора, соответственно значительная часть энергии вращения может быть преобразована в электрическом генераторе в электрическую энергию. Поскольку, однако, электрическая мощность на выходе генератора теперь поддерживается на постоянной величине, газовая турбина при снижающихся температурах окружающей среды может обеспечить эту электрическую мощность на выходе при снижающейся мощности турбины. В соответствии с этим также и нагрузка на газовую турбину при более низких температурах снижается ниже максимально допустимой величины.

Фиг. 4 показывает вторую диаграмму, которая поясняет мощность газовой турбины в качестве функции температуры. При этом вновь электрическая мощность на выходе газотурбинной установки обозначена сплошной линией, а мощность газовой турбины обозначена штриховой линией над температурой Т окружающей среды. Характеристика выше температуры Т0 окружающей среды соответствует характеристике по фиг. 3, так что повторение приведенных выше пояснений можно считать излишним. Ниже температуры Т0 окружающей среды регулирование газовой турбины осуществляют теперь, однако, таким образом, что предельную величину мощности определяют в зависимости от действующих эксплуатационных условий. При этом цель этого заключается в поддержании мощности турбины в качестве регулируемого параметра на ее максимально допустимой величине. Это, однако, ведет к тому, что при снижающихся температурах окружающей среды с уменьшающейся производительностью компрессора может быть реализован требуемый массовый поток воздуха компрессора, так что на электрический генератор может быть выдана соответственно более существенная доля мощности турбины. Следствием этого является соответствующее увеличение электрической мощности на выходе газотурбинной установки. Потенциал рентабельности изобретения можно считать с заштрихованной поверхности А на фиг. 4. В то время как фиг. 3 и 4 относятся к температуре окружающей среды, в смысле настоящего изобретения можно сделать соответствующие выводы в отношении давления воздуха, причем, конечно, необходимо сравнение влияния возрастающего давления воздуха с влиянием при снижающейся температуре и влияния снижающегося давления воздуха с влиянием возрастающей температуры окружающей среды.

Хотя изобретение было детально проиллюстрировано и описано более подробно с помощью предпочтительного примера исполнения, изобретение не ограничено раскрытыми примерами. Специалист может на их основании определить вариации без выхода за объем охраны изобретения, который определен приведенной ниже формулой изобретения.


ИЗМЕНЯЕМОЕ РЕГУЛИРОВАНИЕ ПРЕДЕЛЬНОЙ МОЩНОСТИ ГАЗОВЫХ ТУРБИН
ИЗМЕНЯЕМОЕ РЕГУЛИРОВАНИЕ ПРЕДЕЛЬНОЙ МОЩНОСТИ ГАЗОВЫХ ТУРБИН
Источник поступления информации: Роспатент

Показаны записи 231-240 из 1 427.
27.06.2014
№216.012.d559

Способ и система для контроля системы, связанной с безопасностью

Группа изобретений относится к средствам контроля по меньшей мере одного процесса, происходящего в системе, связанной с безопасностью. Технический результат заключается в обеспечении возможности гибкой и обобщенной сертификации связанных с безопасностью систем. Для этого предложен способ...
Тип: Изобретение
Номер охранного документа: 0002520395
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d599

Способ регулирования для зеркала расплава в кристаллизаторе непрерывной разливки

Подачу жидкого металла в кристаллизатор непрерывной разливки устанавливают посредством блокирующего устройства. Частично отвердевшее металлическое прессованное изделие выпускают из кристаллизатора непрерывной разливки с помощью разгрузочного устройства. Измеренное фактическое значение (hG)...
Тип: Изобретение
Номер охранного документа: 0002520459
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d5ee

Способ определения очищенного ценного газа из газовой смеси, а также устройство для осуществления этого способа

Изобретение относится к способу и устройству для отделения очищенного ценного газа из газовой смеси. Способ и устройство содержат, главным образом, углекислый газ, по меньшей мере, один ценный газ, а также, по меньшей мере, одно вредное вещество, причем проводится конденсация углекислого газа,...
Тип: Изобретение
Номер охранного документа: 0002520544
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d640

Экономящая энергию эксплуатация рельсовых траснспортных средств с, по меньшей мере, двумя приводными блоками

Cпособ управления приводом рельсового транспортного средства, которое имеет привод с несколькими приводными блоками, согласно которому приводные блоки подключают к приводу и отключают от него, так что сумма приводных усилий приводных блоков больше, чем требуемая сила тяги. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002520626
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d77c

Способ функционирования энергетической автоматизированной системы и энергетическая автоматизированная система

Изобретение относится к способу функционирования энергетической автоматизированной системы (10) для электрической сети энергоснабжения, которая имеет локальное устройство (11) обработки данных, которое предоставляет программу, которая при ее выполнении предоставляет функции для управления и/или...
Тип: Изобретение
Номер охранного документа: 0002520942
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d961

Высоковольтный силовой выключатель с раствором контактов, снабженным отклоняющими коммутационный газ элементами

Изобретение касается системы коммутационного аппарата с раствором (6) контактов, который по меньшей мере частично окружен изоляционным соплом (7). Изоляционное сопло (7) имеет сопловой канал (8), который входит в объем (10) нагревания газа. Внутри объема (10) нагревания газа расположен...
Тип: Изобретение
Номер охранного документа: 0002521427
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d9c6

Газотурбинный двигатель

Газотурбинный двигатель включает лопатку статора для направления горячих газов сжигания на роторные лопатки. Лопатка статора включает платформу, расположенную на радиально внутренней стороне лопатки относительно оси вращения двигателя. Платформа имеет часть задней кромки по потоку ниже...
Тип: Изобретение
Номер охранного документа: 0002521528
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.db52

Сплав, защитный слой и деталь

Изобретение относится к области металлургии, в частности к сплавам на основе никеля защитных покрытий деталей газовой турбины. Сплав на основе никеля для защитного покрытия деталей газовой турбины содержит, мас.%: 24-26 кобальта, 16-25 хрома, 9-12 алюминия, 0,1-0,7 иттрия и/или по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002521924
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db53

Металлическое связующее покрытие с высокой гамма/гамма' температурой перехода и компонент

Изобретение относится к области металлургии, в частности к металлическому покрытию с фазами γ- и γ. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ-фазы, при этом сплав содержит, мас.%: железо 0,5-5, кобальт по меньшей мере 1, хром по меньшей мере 1,...
Тип: Изобретение
Номер охранного документа: 0002521925
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbd6

Устройство позиционирования загрузочной корзины

Изобретение относится к оборудованию металлургических печей и касается устройства позиционирования отклоняемой загрузочной корзины у загрузочного отверстия плавильной печи, плавильной печи, способа позиционирования загрузочной корзины, а также способа загрузки плавильной печи. Устройство...
Тип: Изобретение
Номер охранного документа: 0002522056
Дата охранного документа: 10.07.2014
Показаны записи 231-240 из 944.
27.05.2014
№216.012.c827

Турбинная или компрессорная лопатка

Лопатка для турбины или компрессора содержит перо и хвостовик. Перо лопатки изготовлено из согнутой слоистой полосы из армированной волокном пластмассы, в которой в зоне фальца образована удерживающая петля, причем из лежащих друг на друге концов полосы сформирована поверхность лопатки....
Тип: Изобретение
Номер охранного документа: 0002517005
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c918

Пневматическая флотационная машина и способ флотации

Группа изобретений относится к способам флотации с применением пневматических флотационных машин, может быть использована для обогащения полезных ископаемых и при переработке предпочтительно минеральных веществ с содержанием от низкого до среднего полезного компонента или соответственно ценного...
Тип: Изобретение
Номер охранного документа: 0002517246
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9c2

Способ определения массового расхода всасывания газовой турбины

Группа изобретений относится к определению массового расхода всасывания газовой турбины. Технический результат заключается в определении массового расхода всасывания, что обеспечивает возможность надежного прогноза ожидаемого выигрыша по мощности. Для этого предложен способ определения...
Тип: Изобретение
Номер охранного документа: 0002517416
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc79

Система воздушной контактной сети

Изобретение касается системы воздушной контактной сети, включающей в себя потолочные контактные рельсы (1, 16), каждый из которых в своей центральной области посредством неподвижной точки зафиксирован на строительном сооружении (14), а кроме того, соединен со строительным сооружением (14) через...
Тип: Изобретение
Номер охранного документа: 0002518116
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce00

Короткозамкнутый ротор

Изобретение относится к короткозамкнутому ротору для асинхронного электродвигателя. Технический результат заключается в повышении электрического коэффициента полезного действия состоящего из двух материалов короткозамкнутого ротора. Ротор содержит листовой пакет (1) ротора с канавками (3), на...
Тип: Изобретение
Номер охранного документа: 0002518507
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ced6

Устройство для определения углового положения поворотной направляющей лопатки компрессора

Изобретение касается устройства для определения углового положения установленной в компрессоре поворотной вокруг своей продольной оси направляющей лопатки компрессора, для которой предусмотрена синхронно вращающаяся с ней гладкая измерительная поверхность. Угловое положение вращающейся вокруг...
Тип: Изобретение
Номер охранного документа: 0002518721
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cee3

Уплотнение вала для турбомашины

Изобретение относится к уплотнению вала для турбомашины. Уплотнение вала для турбомашины содержит нагружаемое технологическим газом и запираемое со стороны процесса уплотнение технологического газа и нагружаемое воздухом и запираемое со стороны атмосферы атмосферное уплотнение. Вокруг вала...
Тип: Изобретение
Номер охранного документа: 0002518734
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cef2

Секция ротора для ротора турбомашины

Секция ротора турбомашины содержит крепежные пазы для рабочих лопаток, распространяющиеся в осевом направлении. В каждом крепежном пазу установлена рабочая лопатка, включающая обращенную радиально внутрь контактную поверхность. Для пропускания охлаждающего средства по торцевой поверхности...
Тип: Изобретение
Номер охранного документа: 0002518749
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf0a

Многоотражательный многослойный комплекс для охлаждения стенки и способ изготовления такого многоотражательного многослойного комплекса (варианты)

Изобретение относится к охлаждению двигателя внутреннего сгорания. Многоотражательный многослойный комплекс выполнен для контактирования с поверхностью подлежащей охлаждению стенки плоско и с обеспечением теплопроводности и имеет множество перфорированных экранных слоев с множеством выполненных...
Тип: Изобретение
Номер охранного документа: 0002518773
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf0c

Способ и устройство тангенциально смещающего внутреннего охлаждения на направляющей лопатке сопла

Узел турбины содержит первое устройство (200) направляющих лопаток, второе устройство (210) направляющих лопаток, и отражатель (100), образованный из пластинчатого элемента. Отражатель содержит первую область (101) отверстия с первой формой отверстия и вторую область (102) отверстия со второй...
Тип: Изобретение
Номер охранного документа: 0002518775
Дата охранного документа: 10.06.2014
+ добавить свой РИД