×
20.01.2018
218.016.1d66

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ПОВЕРХНОСТНОГО СЛОЯ НА ДЕТАЛЯХ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты) и может быть использовано для обработки лопаток газотурбинных двигателей. Формируют аморфный поверхностный слой путем бомбардировки его ионами одного из следующих элементов: Y, Yb, С, N. После этого аморфизированный поверхностный слой подвергают кристаллизации путем воздействия на поверхность ультразвуковыми колебаниями энергией, достаточной для обеспечения процесса кристаллизации, и проводят процесс кристаллизации до достижения необходимых размеров нанокристаллов. После этого прекращают воздействие ультразвуком и проводят охлаждение материала изделия со скоростью, обеспечивающей фиксацию процессов перехода материала от аморфного состояния к нанокристаллическому. Технический результат заключается в улучшении эксплуатационных характеристик деталей. 3 н. и 3 з.п. ф-лы, 3 пр.

Изобретение относится к области получения нанокристаллических материалов, в частности к получению нанокристаллических поверхностных слоев на деталях из алюминиевых сплавов, и может быть использовано для обработки лопаток газотурбинных двигателей и установок для улучшения их эксплуатационных характеристик.

Известен способ получения твердофазных наноструктурированных материалов путем нанесения вещества на исходную образующую матрицу, в котором наносимое вещество преобразуют в поток кластеров при детонационном горении приготовленной многофазной смеси с катализатором, в продукты детонационного горения вводят буферный газ, подвергают газодинамическому охлаждению при их расширении в сверхзвуковом сопле и направляют на исходную образующую матрицу, которую периодически охлаждают и нагревают [заявка на патент РФ №2005106650. Способ получения твердофазных наноструктурированных материалов и устройство для его реализации. МПК С01В 31/00, 2006 г.].

Недостатком указанного способа является невозможность получения изделий с нанокристаллическим поверхностным слоем.

Известно применение методов интенсивно-пластической деформации для формирования объемных нанокристаллических металлических материалов [Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос, 2000. 272 с.].

Недостатком известного способа [Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос, 2000. 272 с.] является невозможность получения непосредственно в поверхностном слое металлических деталей нанокристаллической структуры. В то же время для таких деталей, как лопатки турбомашин, необходимо обеспечивать упрочненный поверхностный слой материала [патент РФ №2117073. Способ модификации поверхности титановых сплавов. МПК С23С 14/48, 1998]. Лопатки турбомашин работают в условиях воздействия знакопеременных нагрузок, которые могут приводить к возникновению поверхностных трещин и разрушению лопаток. Поэтому эксплуатационную надежность лопаток можно обеспечить путем повышения физико-механических свойств поверхностного слоя материала детали. Создание в поверхностном слое материала нанокристаллической структуры, имеющей по сравнению с обычными не нанокристаллическими сплавами более высокие прочностные свойства, позволяет значительно повысить эксплуатационные свойства подобных изделий. Например, по сравнению со сплавами, имеющими размеры зерен величиной более 1 мкм, время до разрушения образцов при испытаниях на прочность повышается в 2-3 раза, а усталостная долговечность на 1-2 порядка. Кроме того, не всегда, в частности, из соображений дороговизны, является целесообразным создание всего изделия из объемного нанокристаллического металла или сплава. Даже при использовании для изготовления деталей объемного нанокристаллического материала с относительно крупными кристаллами повышенные эксплуатационные свойства могут быть получены за счет измельчения структуры в поверхностном слое материала детали.

Известен способ получения нанокристаллического поверхностного слоя на поверхности изделия с помощью туннельного микроскопа. Согласно этого способа на поверхность изделия наносят тонкий слой металла, на котором сорбируется тонкая пленка воды. В результате электрохимических процессов на обрабатываемом участке образуется слой в несколько десятков нм [Matsumoto К., Sedawa К- Application of Scanning Tunneling Microscopy Nanofabrication process to Single Electron Transistor. - Journ. Vac. Sci. Technol. - 1996, В 14, р. 1331-1335].

Недостатком известного способа является чрезвычайно низкая производительность, которая неприемлема для обработки таких деталей как, например, лопатка турбомашины.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения наноструктурированного поверхностного слоя, заключающийся в бомбардировке поверхности материала тяжелыми ионами. (Fleischer R.L., Price Р.В. Walker R.M. - Nuclear Tracks in Solids. - Univ. of California, Berkeley, 1979). В области трека происходит аморфизация кристаллической структуры с образованием наноразмерных структур, ориентированных вдоль трека.

Недостатком прототипа является неоднородность полученного поверхностного слоя материала изделия, поскольку облучение поверхностного слоя ускоренными тяжелыми ионами приводит к формированию в материале вдоль трека иона сильно разупорядоченной области диаметром от единиц до десятков нм [Микроэлектроника. - 1998, т. 27, 1, с. 46-48].

Задачей и техническим результатом настоящего изобретения являются повышение эксплуатационных характеристик деталей из алюминиевых сплавов за счет формирования на деталях однородного нанокристаллического поверхностного слоя материала.

Технический результат достигается вариантами способа формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов путем бомбардировки его ионами до образования аморфного слоя с последующим воздействием на аморфный слой ультразвуковыми колебаниями до получения нанокристаллов необходимых размеров и фиксацией структуры нанокристаллического поверхностного слоя его охлаждением.

В отличие от прототипа по первому варианту бомбардировку поверхностного слоя производят имплантацией в него или ионов Y при энергии от 25 до 30 кэВ, дозой от 2,8⋅1017 см-2 до 3,6⋅1017 см-2, со скоростью набора дозы от 1,1⋅1015 с-1 до 1,8⋅1015 с-1, а нанокристаллы получают размером в диапазоне 10…700 нм.

В отличие от прототипа по второму варианту бомбардировку поверхностного слоя производят имплантацией в него или ионов Yb при энергии от 25 до 30 кэВ, дозой от 2,8⋅1017 см-2 до 3,6⋅1017 см-2, со скоростью набора дозы от 1,1⋅1015 с-1 до 1,8⋅1015 с-1, а нанокристаллы получают размером в диапазоне 10…700 нм.

В отличие от прототипа по третьему варианту бомбардировку поверхностного слоя, производят имплантацией в него или ионов N при энергии от 25 до 30 кэВ, дозой от 2,8⋅1017 см-2 до 3,6⋅10 см-2, со скоростью набора дозы от 1,1⋅1015 с-1 до 1,8⋅1015 с-1, а нанокристаллы получают размером в диапазоне 10…700 нм.

Кроме того, по всем вариантам способа возможны следующие дополнительные приемы: в качестве детали используют турбинную лопатку; перед ионной имплантацией проводят обработку поверхностным пластическим деформированием микрошариками.

Сущность изобретения по предлагаемому способу заключается в том, что в поверхностном слое материала изделия одним из известных способов формируют равномерный аморфный поверхностный слой. Формирование аморфного слоя позволяет, с одной стороны уменьшить влияние исходной структуры материала детали на вновь формируемую нанокристаллическую структуру поверхностного слоя, а с другой стороны - создает предпосылки к образованию нанокристаллов в процессе последующей кристаллизации. В качестве одного из методов получения аморфного слоя могут использоваться известные методы ионной имплантации. Для повышения эффекта аморфизации поверхностного слоя могут использоваться, в сочетании с процессом последующей ионной имплантации методы поверхностного пластического деформирования, в частности обработка микрошариками. Процессы деформирования поверхностного слоя, например, приложением высокочастотной знакопеременной нагрузки позволяют сформировать в материале волновые процессы, которые наряду с процессами нагрева позволяют управлять формированием размеров нанокристаллов. В данном случае размеры нанокристаллов будут зависеть от частоты приложенной нагрузки и времени температурной выдержки. При этом для быстрой фиксации процессов перехода материала от аморфного состояния к нанокристаллическому необходимо также управлять скоростью охлаждения материала изделия.

Таким образом, получение аморфного поверхностного слоя материала детали из алюминиевого сплава с последующим преобразованием его путем деформации и кристаллизации в нанокристаллический поверхностный слой материала изделия (например, лопатки турбомашины) позволяют достичь эффекта предлагаемого технического решения - повышения эксплуатационных характеристик деталей из алюминиевых сплавов.

Пример. Для оценки эксплуатационных свойств деталей машин, обработанных по прототипу и предлагаемому способу, были проведены испытания на выносливость и циклическую прочность в условиях эксплуатационных температур (при 100-170°С) на воздухе. Образцы деталей (лопаток турбин) были изготовлены из алюминиевых сплавов Д1, Д16, Д16Т. Режимы и условия обработки деталей по способу-прототипу были следующие: имплантация ионов Yb; энергия ионов 30 кэВ; плотность ионного тока 5-10 мА/см2; доза имплантации ионов 2,8⋅1017 см-2.

Условия обработки по предлагаемому способу. (Удовлетворительным результатом (У.Р.) считался результат, в котором условный предел выносливости (σ-1) алюминиевых сплавов повышался не менее чем на 13%.)

По первому варианту режимы имплантации ионов Y:

- энергия ионов: 23 кэВ - Н.Р., 25 кэВ - У.Р., 27 кэВ - У.Р., 30 кэВ - У.Р., 33 кэВ - Н.Р.

- доза: 2,6⋅1017 см-2 - Н.Р., 2,8⋅1017 см-2 - У.Р., 3,2⋅1017 см-2 - У.Р., 3,6⋅1017 см-2 - У.Р., 3,8⋅1017 см-2 - Н.Р.

- скорость набора дозы: 0,9⋅1015 с-1 - Н.Р., 1,1⋅1015 с-1 - У.Р., 1,4⋅1015 с-1 - У.Р., 1,8⋅1015 c-1 - У.Р., 2,0⋅1015 с-1 - Н.Р.

Размеры нанокристаллов: 10…700 нм 6 нм - Н.Р., 10 нм - У.Р., 80 нм - У.Р., 260 нм - У.Р., 400 нм - У.Р., 600 нм - У.Р., 700 нм - У.Р., 800 нм - Н.Р.

Частота ультразвуковых колебаний: 109 Гц - Н.Р., 1010 Гц - У.Р., 1011 Гц - У.Р., 1012 Гц - У.Р., 1013 Гц - У.Р., 1014 Гц - Н.Р.

По второму варианту режимы имплантации ионов Yb:

- энергия ионов: 24 кэВ - Н.Р., 25 кэВ - У.Р., 26 кэВ - У.Р., 30 кэВ - У.Р., 33 кэВ - Н.Р.

-доза: 2,5⋅1017 см-2 - Н.Р., 2,8⋅1017 см-2 - У.Р., 3,1⋅1017 см-2 - У.Р., 3,6⋅1017 см-2 - У.Р., 3,7⋅1017 см-2 - Н.Р.

- скорость набора дозы: 0,8⋅1015 с-l - Н.Р., 1,1⋅1015 с-1 - У.Р., 1,8⋅1015c-1 - У.Р., 1,9⋅1015 c-1 - H.P.

Размеры нанокристаллов: 7 нм - Н.Р., 10 нм - У.Р., 80 нм - У.Р., 260 нм - У.Р., 400 нм - У.Р., 600 нм - У.Р., 700 нм - У.Р., 760 нм - Н.Р.

Частота ультразвуковых колебаний: 109 Гц - Н.Р., 1010 Гц - У.Р., 1011 Гц - У.Р., 1012 Гц - У.Р., 1013 Гц - У.Р., 1014 Гц - Н.Р.

По третьему варианту режимы имплантации ионов N:

- энергия ионов: 23 кэВ - Н.Р., 25 кэВ - У.Р., 29 кэВ - У.Р., 30 кэВ - У.Р., 32 кэВ - Н.Р.

- доза: 2,6⋅1017 см-2 - Н.Р., 2,8⋅1017 см-2 - У.Р., 3,3⋅1017 см-2 - У.Р., 3,6⋅1017 см-2 - У.Р., 3,8⋅1017 см-2 - Н.Р.

- скорость набора дозы: 0,9⋅1015 с-1 - Н.Р., 1,1⋅1015 с-1 - У.Р., 1,5⋅1015 c-1 - У.P., 1,8⋅1015 с-1 - У.Р., 2,0⋅1015 с-1 - Н.Р.

Размеры нанокристаллов: 8 нм - Н.Р., 10 нм - У.Р., 70 нм - У.Р., 240 нм - У.Р., 400 нм - У.Р., 600 нм - У.Р., 700 нм - У.Р., 750 нм - Н.Р.

Частота ультразвуковых колебаний: 109 Гц - Н.Р., 1010 Гц - У.Р., 1011 Гц - У.Р., 1012 Гц - У.Р., 1013 Гц - У.Р., 1014 Гц - Н.Р.

В результате проведенных испытаний были получены следующие результаты: условный предел выносливости (σ-1) лопаток из дюралюминия (Д16) в среднем по сравнению с прототипом составляет:

1) прототип: 120-125 МПа;

2) по предлагаемому техническому решению: 135-145 МПа;

3) по предлагаемому техническому решению с дополнительной обработкой микрошариками: 138-147 МПа.

Условный предел выносливости (σ-1) алюминиевых сплавов (Д1, Д16, Д16Т) при имплантации ионов Y в среднем повышается приблизительно на 13-18%, при имплантации ионов Yb в среднем повышается приблизительно на 14%-17%, при имплантации ионов N в среднем повышается приблизительно на 15%-19%, что подтверждает заявленный технический результат.

Проведенные исследования показали, что применение предлагаемого способа получения нанокристаллического поверхностного слоя позволяет повысить по сравнению с прототипом эксплуатационные характеристики лопаток из алюминиевых сплавов. Как видно из приведенных примеров, условный предел выносливости (σ-1) повышается в среднем приблизительно на 13%-18%.

Таким образом, предложенный способ формирования нанокристаллического поверхностного слоя (варианты) на деталях из алюминиевых сплавов позволяет повысить эксплуатационные характеристики деталей из алюминиевых сплавов за счет формирования однородного нанокристаллического поверхностного слоя материала.

Источник поступления информации: Роспатент

Показаны записи 171-180 из 218.
18.12.2019
№219.017.ee62

Способ получения алюминиевых композитных проводов, армированных длинномерным волокном

Изобретение относится к области машиностроения и предназначено для изготовления длинномерных композитных изделий на основе керамических, борных или углеродных волокон. В способе получения алюминиевых композитных проводов, армированных длинномерным волокном, в котором волокно с катушек...
Тип: Изобретение
Номер охранного документа: 0002709025
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee6d

Электромеханический преобразователь энергии с зубцовой концентрической обмоткой

Изобретение относится к области электромашиностроения и может быть использовано в автономных системах электроснабжения, а также в авиационной отрасли в качестве стартер-генератора. Технический результат - минимизация колебаний частоты вращения и электромагнитного момента при номинальном режиме...
Тип: Изобретение
Номер охранного документа: 0002709024
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee94

Многофазная стержневая волновая обмотка статора асинхронного двигателя

Изобретение относится к области электротехники и может быть использовано при конструировании асинхронных электрических двигателей, питаемых от преобразователей частоты. Технический результат: повышение технологичности и улучшение охлаждения волновой обмотки. Шихтованный магнитопровод статора...
Тип: Изобретение
Номер охранного документа: 0002709095
Дата охранного документа: 16.12.2019
25.12.2019
№219.017.f211

Система электроснабжения летательного аппарата

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов. Система электроснабжения летательного аппарата содержит приводной авиационный двигатель, генератор, выводные концы которого...
Тип: Изобретение
Номер охранного документа: 0002710037
Дата охранного документа: 24.12.2019
25.12.2019
№219.017.f22a

Способ обработки перфорационных отверстий в полых лопатках турбомашины и установка для его реализации

Изобретение относится к области машиностроения и может быть использовано для обработки сухого электрохимического полирования перфорационных отверстий в полых лопатках турбомашин. Способ включает размещение в полости лопатки электрода, помещение лопатки в среду гранул, выполненных из анионитов,...
Тип: Изобретение
Номер охранного документа: 0002710087
Дата охранного документа: 24.12.2019
25.12.2019
№219.017.f254

Способ электрополирования внутреннего канала металлической детали и устройство для его реализации

Изобретение относится к области машиностроения и может быть использовано для обработки каналов, в частности внутренних поверхностей стволов артиллерийских орудий путем электрополирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала вдоль его оси. В...
Тип: Изобретение
Номер охранного документа: 0002710086
Дата охранного документа: 24.12.2019
25.12.2019
№219.017.f25e

Генератор электрической энергии для космического аппарата

Изобретение относится к области энергетики и может применяться для электроснабжения космических аппаратов, в частности космических спутников. В генераторе электрической энергии, содержащем преобразователь тепловой энергии в электрическую с магнитной системой из постоянных магнитов и...
Тип: Изобретение
Номер охранного документа: 0002710118
Дата охранного документа: 24.12.2019
17.01.2020
№220.017.f68d

Способ повышения износостойкости детали типа зубчатое колесо

Изобретение относится к области технологии машиностроения, а именно к зубчатым передачам, и предназначено для обеспечения высокой износостойкости зубчатого зацепления, позволяет повысить долговечность зубчатых передач. Предлагается способ химико-термической обработки в плазме тлеющего разряда...
Тип: Изобретение
Номер охранного документа: 0002711064
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f68f

Способ ионного азотирования в скрещенных электрических и магнитных полях

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали. Способ ионного...
Тип: Изобретение
Номер охранного документа: 0002711067
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6c9

Способ ионной очистки в скрещенных электрических и магнитных полях перед вакуумной ионно-плазменной обработкой

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности деталей. Способ вакуумной ионно-плазменной очистки деталей включает загрузку в камеру предварительно очищенных от загрязнений деталей, получение в ней вакуума и проведение ионной...
Тип: Изобретение
Номер охранного документа: 0002711065
Дата охранного документа: 15.01.2020
Показаны записи 151-154 из 154.
02.08.2020
№220.018.3c3e

Способ оценки прочности сцепления многослойного покрытия

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой, и может быть использовано для оценки прочности сцепления слоев в многослойном покрытии. Способ оценки прочности сцепления многослойного покрытия...
Тип: Изобретение
Номер охранного документа: 0002728732
Дата охранного документа: 30.07.2020
20.05.2023
№223.018.67f8

Способ подбора дозы ионной имплантации для активации поверхности детали из легированной стали перед азотированием

Изобретение относится к способу подбора дозы ионной имплантации для активации поверхности детали из легированной стали перед азотированием. Используют одинаковые по форме и размерам плоские образцы из легированной стали для испытания на разрыв толщиной, равной толщине заданного азотированного...
Тип: Изобретение
Номер охранного документа: 0002794640
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6a6d

Способ азотирования детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых...
Тип: Изобретение
Номер охранного документа: 0002795620
Дата охранного документа: 05.05.2023
16.06.2023
№223.018.7abd

Способ электролитно-плазменного полирования детали

Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой...
Тип: Изобретение
Номер охранного документа: 0002734802
Дата охранного документа: 23.10.2020
+ добавить свой РИД