×
20.01.2018
218.016.1b7e

Результат интеллектуальной деятельности: ГИБРИДНЫЙ МАГНИТНЫЙ ПОДШИПНИК С ИСПОЛЬЗОВАНИЕМ СИЛ ЛОРЕНЦА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные обмотки, расположенные одна над другой, при этом нижняя m-фазная обмотка выполнена со скосом, а верхняя m-фазная обмотка - без скоса, на левом конце вала установлен радиально аксиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, а на правом конце вала - радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера. Отличие по второму варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что на левом конце вала установлен левый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, а на правом конце вала - правый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера. Технический результат: повышение устойчивости ротора на гибридных магнитных подшипниках и его управляемости, а также снижение потребления энергии на управление положением ротора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин.

Известен магнитный подшипник (патент РФ №2089761 С1, F16C 32/04, 10.09.1997), содержащий вал, ротор из двух колец из постоянного магнита, намагниченный в осевом направлении, статор, включающий полюсный элемент и две кольцевые катушки. В осевом зазоре между кольцами ротора установлен кольцевой диск из немагнитного материала с высокой электропроводностью.

Недостатками данного устройства являются ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Известен упорный магнитный подшипник с подмагничиванием постоянным магнитным полем смещения (патент РФ №2138706 С1, F16C 32/04, F16C 39/06, 27.09.1999), содержащий вращающийся элемент (или вал) с ободом (или опорным участком) кольцевой формы, находящимся между парой зубцов подковообразного управляющего элемента. Постоянным магнитом создается магнитное поле, распространяющееся через нависающую консоль и порождающее силу притяжения между подмагниченными поверхностью консоли и верхней торцевой поверхностью вала. Эта смещающая сила притяжения поддерживает вал в равновесии так, что обод находится между поверхностями пары зубцов и равноудален от них. Внутри подковообразного управляющего элемента вокруг вала намотаны обмотки.

Недостатками данного устройства являются сложность системы управления, а также значительные потери на вихревые токи в магнитном подшипнике при высоких частотах вращения ротора.

Известна опора (патент РФ №2178243 С2, Н05Н 1/00, 10.01.2002), содержащая установленный в корпусе цилиндрический аксиально намагниченный магнит, размещенную на роторе соосно ферромагнитную втулку, расположенную напротив нижнего торца магнита, и кольцевую камеру с демпфирующей жидкостью. Камера снабжена внутри радиально подвижным кольцевым элементом, подвешенным на гибких нитях и состоящим из внутреннего ферромагнитного кольца и связанного с ним наружного немагнитного кольца.

Недостатками данного устройства являются ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Известен радиальный подшипник на магнитной подвеске (патент РФ 2264565 С2, F16C 32/04, 20.11.2005), содержащий вал, корпус, кольцевые постоянные магниты, страховочные радиальные механические подшипники, торцевой подшипник, внешние экраны из диамагнетика, наружные и внутренние кольца кольцевых постоянных магнитов снабжены экранами для обеспечения одного работающего полюса. Кольцевой постоянный магнит внутреннего кольца расположен на оси с возможностью создания неэкранированным полюсом магнитного поля впереди себя в радиальном направлении, а кольцевой постоянный магнит наружного кольца - с возможностью создания неэкранированным полюсом магнитного поля, направленного навстречу полю кольцевого постоянного магнита внутреннего кольца.

Недостатками данного устройства являются повышенные массогабаритные показатели электрической машины, вызванные способом установки механических подшипников, и ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Наиболее близким по технической сущности и достигаемому результату к гибридному магнитному подшипнику с использованием сил Лоренца (Novel High-Speed, Lorentz-Type, Slotless Self Bearing Motor // 2010 IEEE Energy Conversion Congress and Exposition pp. 3971-3977) является подшипник, содержащий беспазовый статор, в котором уложена основная обмотка, n-полюсный ротор с бандажной втулкой, управляющую m-фазную обмотку, установленную поверх основной обмотки электрической машины, в которой установлен гибридный магнитный подшипник, электрически соединенную с системой управления, при этом основная обмотка выполнена для n-полюсного ротора, а управляющая обмотка подшипника - для 2n-полюсного ротора, причем частота тока основной обмотки и дополнительной равны.

Недостатками данного устройства являются невысокая тяговая сила в воздушном зазоре магнитных подшипников, перегрев ротора, обусловленный током, протекающим по дополнительной обмотке, возможность управления положением ротора только в радиальном направлении.

Задача изобретения - расширение функциональных возможностей за счет введения управления положением ротора и в осевом направлении, снижение массогабаритных показателей гибридного магнитного подшипника и перегрева ротора при одновременном увеличении его тяговой силы в воздушном зазоре благодаря использованию совместно с магнитными подшипниками на силах Лоренца магнитных подшипников на постоянных магнитах, снижение уровня вибраций в гибридном магнитном подшипнике благодаря применению пассивного демпфера.

Техническим результатом является повышение устойчивости ротора на гибридных магнитных подшипниках и его управляемости, а также снижение потребления энергии на управление положением ротора.

Поставленная задача решается и указанный технический результат по первому варианту достигается тем, что в гибридном магнитном подшипнике с использованием сил Лоренца, содержащем беспазовый статор, в котором уложена основная обмотка, n-полюсный ротор с бандажной втулкой, управляющую m-фазную обмотку, установленную поверх основной обмотки электрической машины, в которой установлен гибридный магнитный подшипник, электрически соединенную с системой управления, при этом основная обмотка выполнена для n-полюсного ротора, а управляющая обмотка подшипника - для 2n-полюсного ротора, причем частота тока основной обмотки и дополнительной равны, согласно изобретению введены две управляющие m-фазные обмотки, расположенные одна над другой, при этом нижняя m-фазная обмотка выполнена со скосом, а верхняя m-фазная обмотка - без скоса, на левом конце вала установлен радиально аксиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, а на правом конце вала - радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Поставленная задача решается и указанный технический результат по второму варианту достигается тем, что в гибридном магнитном подшипнике с использованием сил Лоренца, содержащем беспазовый статор, в котором уложена основная обмотка, n-полюсный ротор с бандажной втулкой, управляющую m-фазную обмотку, установленную поверх основной обмотки электрической машины, в которой установлен гибридный магнитный подшипник, электрически соединенную с системой управления, при этом основная обмотка выполнена для n-полюсного ротора, а управляющая обмотка подшипника - для 2n-полюсного ротора, причем частота тока основной обмотки и дополнительной равны, согласно изобретению на левом конце вала установлен левый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, а на правом конце вала - правый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Существо изобретения поясняется чертежами. На фиг. 1 изображен продольный разрез гибридного магнитного подшипника с использованием сил Лоренца по первому варианту. На фиг. 2 изображен продольный разрез гибридного магнитного подшипника с использованием сил Лоренца по второму варианту.

Предложенное устройство по первому варианту содержит (фиг. 1): беспазовый статор 1, в котором уложена основная обмотка 2, n-полюсный ротор 3 с бандажной втулкой 4, правый радиальный магнитный подшипник на постоянных магнитах 5, состоящий из внутреннего 6 и внешнего 7 наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, систему управления 8, электрически соединенную с верхней управляющей m-фазной обмоткой 9 и нижней управляющей m-фазной обмоткой 10, выполненной со скосом, установленные поверх основной обмотки 2 левый радиально аксиальный магнитный подшипник на постоянных магнитах 11, состоящий из внутреннего 12 и внешнего 13 наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца 14, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку 4, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Предложенное устройство по второму варианту содержит (фиг. 2): беспазовый статор 1, в котором уложена основная обмотка 2, n-полюсный ротор 3 с бандажной втулкой 4, правый радиальный магнитный подшипник на постоянных магнитах 5, состоящий из внутреннего 6 и внешнего 7 наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, систему управления 8, электрически соединенную с управляющей m-фазной обмоткой 9, установленные поверх основной обмотки 2, внутренний 12 и внешний 13 набор радиальных магнитных колец, образующих левый радиальный магнитный подшипник на постоянных магнитах 15, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку 4, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера, вдобавок в воздушном зазоре правого радиального магнитного подшипника на постоянных магнитах 5 расположена кольцевая обмотка 16, а в воздушном зазоре левого радиального магнитного подшипника на постоянных магнитах 15 расположена кольцевая обмотка 17.

Гибридный магнитный подшипник с использованием сил Лоренца по первому варианту работает следующим образом: при протекании тока по нижней управляющей m-фазной обмотке 10 на ротор воздействуют радиальные силы, которые его уравновешивают в радиальном направлении, направление данных сил определяется правилом левой руки, при этом благодаря скосу нижней m-фазной обмотки 10 на ротор воздействует и аксиальная сила, которую уравновешивает радиально аксиальный магнитный подшипник на постоянных магнитах 11 за счет сил отталкивания между аксиальным магнитным кольцом 14 и набором радиальных магнитных колец 12. Величина радиальных и аксиальных сил, создаваемых нижней управляющей m-фазной обмоткой 10, пропорциональна силе тока, протекающей по ней. При смещении ротора в аксиальном направлении сила тока в нижней m-фазной обмотке 6 изменяется, при этом изменяются силы в аксиальном направлении, что позволяет компенсацию смещения ротора в аксиальном направлении, но при этом также изменяются силы и в радиальном направлении, для компенсации которых системой управления подается ток на верхнюю управляющую m-фазную обмотку 9. Тем самым достигается возможность управления положением ротора в осевом направлении. При этом для увеличения тяговой силы и снижения потребляемого тока верхней m-фазной обмоткой 9 и нижней управляющей m-фазной обмоткой 10, а также для снижения перегрева ротора используются радиально аксиальный магнитный подшипник на постоянных магнитах 11 и радиальный магнитный подшипник на постоянных магнитах 5, которые обеспечивают левитацию ротора при минимальном токе в управляющей m-фазной верхней обмотке 9 и нижней управляющей m-фазной обмотке 10. Кроме того, так как в управляющей m-фазной верхней обмотке 9 ток протекает только для компенсации радиальных сил, то перегрев ротора минимален. Так как бандажная втулка выполнена из электропроводящего материала, то при вибрациях ротора в ней будут наводиться вихревые токи, которые будут снижать уровень вибраций в гибридном магнитном подшипнике, то есть бандажная оболочка выполняет функцию пассивного демпфера.

Гибридный магнитный подшипник с использованием сил Лоренца по второму варианту работает следующим образом: при протекании тока по управляющей m-фазной обмотке 9 на ротор воздействуют радиальные силы, которые его уравновешивают в радиальном направлении, направление данных сил определяется правилом левой руки, при этом благодаря протеканию тока по кольцевым обмоткам 16 и 17 возникают аксиальные силы, которые уравновешивает ротор в аксиальном направлении. Величина радиальных и аксиальных сил, создаваемых управляющей m-фазной обмоткой 9 и кольцевыми обмотками 16, 17, пропорциональна силе тока, протекающей по ним. При смещении ротора в аксиальном направлении сила тока в кольцевых обмотках 16 или 17 (в зависимости от направления смещения) изменяется, при этом изменяются силы в аксиальном направлении, что позволяет компенсацию смещения ротора в аксиальном направлении. Тем самым достигается возможность управления положением ротора в осевом направлении. При этом для увеличения тяговой силы и снижения потребляемого тока m-фазной обмоткой 9, а также для снижения перегрева ротора используются левый радиальный магнитный подшипник на постоянных магнитах 15 и правый радиальный магнитный подшипник на постоянных магнитах 5, которые обеспечивают левитацию ротора при минимальном токе в управляющей m-фазной обмотке 9. Так как бандажная втулка выполнена из электропроводящего материала, то при вибрациях ротора в ней будут наводиться вихревые токи, которые будут снижать уровень вибраций в гибридном магнитном подшипнике, то есть бандажная оболочка выполняет функцию пассивного демпфера.

Итак, заявляемое изобретение позволяет расширить функциональные возможности за счет введения управления положением ротора в осевом направлении, снизить массогабаритные показатели гибридного магнитного подшипника и перегрев ротора при одновременном увеличении его тяговой силы в воздушном зазоре благодаря использованию совместно с магнитными подшипниками на силах Лоренца магнитных подшипников на постоянных магнитах, снизить уровень вибраций в гибридном магнитном подшипнике благодаря применению пассивного демпфера, выполненного в виде бандажной втулки ротора.

Таким образом, достигается повышение устойчивости ротора на гибридных магнитных подшипниках и его управляемости, а также снижение потребления энергии на управление положением ротора.


ГИБРИДНЫЙ МАГНИТНЫЙ ПОДШИПНИК С ИСПОЛЬЗОВАНИЕМ СИЛ ЛОРЕНЦА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 101-110 из 214.
09.06.2018
№218.016.6033

Ротор для высокоскоростных электромеханических преобразователей энергии с высококоэрцитивными постоянными магнитами

Использование: изобретение относится к области электротехники и может быть использовано в высокоскоростных электрических машинах. Технический результат: повышение надежности ротора, снижение добавочных потерь. Ротор электромеханического преобразователя энергии с постоянными магнитами содержит...
Тип: Изобретение
Номер охранного документа: 0002656863
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.604d

Сверхвысокооборотный микрогенератор

Изобретение относится к электротехнике и может быть использовано для обеспечения электроэнергией автономных объектов. Технический результат состоит в снижении физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума, повышению...
Тип: Изобретение
Номер охранного документа: 0002656869
Дата охранного документа: 07.06.2018
11.06.2018
№218.016.60af

Магнитная система ротора синхронного двигателя с инкорпорированными магнитами (варианты)

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение мощности, механического момента, к.п.д. при снижении массогабаритных показателей. Магнитная система ротора с...
Тип: Изобретение
Номер охранного документа: 0002657003
Дата охранного документа: 08.06.2018
11.06.2018
№218.016.616a

Способ фильтрации капельной фазы при осаждении из плазмы вакуумно-дугового разряда

Изобретение относится к области нанесения покрытий из плазмы вакуумно-дугового разряда и может быть использовано для получения фильтрованной плазмы. Способ фильтрации капельной фазы из плазмы вакуумно-дугового разряда при осаждении многослойного покрытия системы Ti-Al на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002657273
Дата охранного документа: 09.06.2018
29.06.2018
№218.016.689e

Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов (варианты)

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение...
Тип: Изобретение
Номер охранного документа: 0002659091
Дата охранного документа: 28.06.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
08.07.2018
№218.016.6d92

Способ получения форм для литья охлаждаемых лопаток

Изобретение относится к литейному производству и может быть использовано для получения охлаждаемых лопаток ГТД. Способ изготовления оболочковой формы для литья по выплавляемым моделям охлаждаемых лопаток из жаропрочных сплавов включает изготовление обожженного керамического стержня, имеющего...
Тип: Изобретение
Номер охранного документа: 0002660554
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6e86

Гомополярный магнитный подшипник для высокоскоростных электрических машин

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электрических машинах. Технический результат: состоит в повышении надежности, повышении к.п.д. за счет снижения потерь на вихревые токи и гистерезис, а также в снижении массогабаритных показателей за счет...
Тип: Изобретение
Номер охранного документа: 0002660447
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.6fd4

Параметрический трансформатор

Изобретение относится к электротехнике и может быть использовано при проектировании параметрических трансформаторов повышенной частоты для источников вторичного электропитания. Технический результат состоит в повышении перегрузочной способности без затухания колебаний за счет отсутствия...
Тип: Изобретение
Номер охранного документа: 0002660835
Дата охранного документа: 10.07.2018
14.07.2018
№218.016.7164

Способ получения многослойной детали из титанового сплава

Использование: изобретение относится к способу получения многослойной детали из титанового сплава. Осуществляют ионно-имплантационное модифицирование листовой детали из титанового сплава путем ионной имплантации азота, углерода или бора с энергией 30-50 кэВ, плотностью тока 35-50 мкА/см и...
Тип: Изобретение
Номер охранного документа: 0002661294
Дата охранного документа: 13.07.2018
Показаны записи 101-110 из 117.
02.10.2019
№219.017.cef2

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами и с асинхронным пуском.

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение энергетических характеристик: полезной мощности, механического момента, коэффициента мощности, кпд при снижении массогабаритных...
Тип: Изобретение
Номер охранного документа: 0002700663
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf27

Высокооборотный электромеханический преобразователь энергии с воздушным охлаждением (варианты)

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности и эффективности отвода выделяемого тепла электромеханических преобразователей энергии, повышении КПД за счет предохранения постоянных магнитов ротора от теплового размагничивания. По внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002700280
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d157

Электрическая машина с интенсивной системой охлаждения

Изобретение относится к области электромашиностроения и может быть использовано при изготовлении электродвигателей и генераторов. Технический результат - повышение надежности электрических машин благодаря защите от межвиткового короткого замыкания, а также повышение эффективности охлаждения...
Тип: Изобретение
Номер охранного документа: 0002700274
Дата охранного документа: 16.09.2019
01.11.2019
№219.017.dc88

Способ диагностики двухполюсного ротора с постоянными магнитами

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами....
Тип: Изобретение
Номер охранного документа: 0002704567
Дата охранного документа: 29.10.2019
19.11.2019
№219.017.e3b8

Магнитоэлектродегидратор

Изобретение относится к аппаратам для обезвоживания и обессоливания нефти и очистки нефтепродуктов и может быть использовано в нефтяной и нефтеперерабатывающей промышленности. Магнитоэлектродегидратор содержит корпус, источник питания, электроды. Содержит герметично закрепленную с нижней...
Тип: Изобретение
Номер охранного документа: 0002706316
Дата охранного документа: 15.11.2019
24.11.2019
№219.017.e60c

Статор электрической машины с жидкостным охлаждением (варианты)

Изобретение относится к области электромашиностроения, в частности к высокооборотным электрическим машинам. Технический результат - повышение эффективности охлаждения и снижение тепловой заметности электрических машин. Беспазовый статор электрической машины с жидкостным охлаждением содержит...
Тип: Изобретение
Номер охранного документа: 0002706802
Дата охранного документа: 21.11.2019
14.12.2019
№219.017.edf5

Устройство стабилизации напряжения магнитоэлектрического генератора

Изобретение относится к электротехнике. Технический результат заключается в возможности стабилизации напряжения двухполюсного магнитоэлектрического генератора при одновременном повышении его эффективности и минимизации массогабаритных показателей. Устройство стабилизации напряжения...
Тип: Изобретение
Номер охранного документа: 0002708881
Дата охранного документа: 12.12.2019
18.12.2019
№219.017.ee6d

Электромеханический преобразователь энергии с зубцовой концентрической обмоткой

Изобретение относится к области электромашиностроения и может быть использовано в автономных системах электроснабжения, а также в авиационной отрасли в качестве стартер-генератора. Технический результат - минимизация колебаний частоты вращения и электромагнитного момента при номинальном режиме...
Тип: Изобретение
Номер охранного документа: 0002709024
Дата охранного документа: 13.12.2019
25.12.2019
№219.017.f211

Система электроснабжения летательного аппарата

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов. Система электроснабжения летательного аппарата содержит приводной авиационный двигатель, генератор, выводные концы которого...
Тип: Изобретение
Номер охранного документа: 0002710037
Дата охранного документа: 24.12.2019
25.12.2019
№219.017.f25e

Генератор электрической энергии для космического аппарата

Изобретение относится к области энергетики и может применяться для электроснабжения космических аппаратов, в частности космических спутников. В генераторе электрической энергии, содержащем преобразователь тепловой энергии в электрическую с магнитной системой из постоянных магнитов и...
Тип: Изобретение
Номер охранного документа: 0002710118
Дата охранного документа: 24.12.2019
+ добавить свой РИД