×
20.01.2018
218.016.1a5c

Результат интеллектуальной деятельности: Аксиальный трехвходовый ветро-солнечный генератор

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике, к электромеханическим преобразователям энергии, и может быть использовано в качестве преобразователя механической энергии вращения, например энергии ветра, подаваемой на механические входы машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной фотоэлектрическими преобразователями в электроэнергию постоянного тока, одновременно подаваемой на ее электрический вход, в суммарную электрическую энергию переменного тока. Технический результат состоит в повышении КПД. Генератор содержит корпус, возбудитель и основной генератор, установленные на одном валу, закрепленном в корпусе в подшипниковых узлах. В корпусе с одной стороны жестко закреплен постоянный многосекционный многополюсный магнит индуктора возбудителя, между секциями которого в пазах уложена однофазная дополнительная обмотка возбуждения возбудителя. С противоположной стороны жестко закреплен боковой аксиальный магнитопровод с одной активной торцовой поверхностью, в пазы которого уложена многофазная обмотка якоря основного генератора. Корпус генератора выполнен в форме цилиндра, к внешнему основанию которого прикреплена ступица ветроколеса, а в средней части боковой поверхности корпуса генератора установлены токосъемные кольца, соединенные с многофазной обмоткой якоря основного генератора и однофазной дополнительной обмоткой возбуждения возбудителя. Корпус генератора установлен внутри совмещенной стационарной подшипниковой опоры с возможностью вращения относительно внутреннего магнитопровода с двумя активными торцовыми поверхностями вокруг их общей оси симметрии. Внутренние кольца шарикоподшипников совмещены с корпусом генератора в форме желобов, расположенных на боковой поверхности корпуса генератора вдоль его оснований напротив посадочных желобов корпуса опоры, в нижней внутренней части которой по центру напротив токосъемных колец установлены скользящие контакты. 4 ил.

Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии вращения (например, энергии ветра), подаваемой на механические входы машины, и электрической энергии постоянного тока (например, световой энергии Солнца, преобразованной фотоэлектрическими преобразователями в электроэнергию постоянного тока), одновременно подаваемой на ее электрический вход, в суммарную электрическую энергию переменного тока.

Известна аксиальная двухвходовая бесконтактная электрическая машина-генератор (АДБЭМГ), содержащая корпус, подвозбудитель, возбудитель, и основной генератор, установленные на одном валу (патент РФ №2450411, авторы Гайтов Б.Х., Кашин Я.М. и др.). Подвозбудитель АДБЭМГ состоит из постоянного многополюсного магнита индуктора подвозбудителя и магнитопровода с обмоткой якоря подвозбудителя. Возбудитель АДБЭМГ состоит из магнитопровода с обмоткой возбуждения возбудителя и магнитопровода с обмоткой якоря возбудителя. Основной генератор АДБЭМГ состоит из магнитопровода с обмоткой возбуждения основного генератора и магнитопровода с обмоткой якоря основного генератора. Постоянный многополюсный магнит индуктора подвозбудителя и магнитопроводы, в пазы которых уложены обмотки подвозбудителя, возбудителя и основного генератора АДБЭМГ, выполнены аксиальными, при этом боковые аксиальные магнитопроводы жестко установлены в корпусе, а постоянный многополюсный магнит индуктора подвозбудителя и внутренний аксиальный магнитопровод жестко установлены на валу с возможностью вращения относительно боковых аксиальных магнитопроводов. Постоянный многополюсный магнит индуктора подвозбудителя установлен с торца одного бокового аксиального магнитопровода, а внутренний аксиальный магнитопровод установлен между боковыми аксиальными магнитопроводами. Внутренний аксиальный магнитопровод и боковой аксиальный магнитопровод, с торца которого установлен постоянный многополюсный магнит индуктора подвозбудителя, выполнены с двумя активными торцовыми поверхностями с пазами, а другой боковой аксиальный магнитопровод выполнен с одной активной торцовой поверхностью с пазами, при этом в пазы бокового аксиального магнитопровода с двумя активными торцовыми поверхностями со стороны постоянного многополюсного магнита подвозбудителя уложена многофазная обмотка якоря подвозбудителя, а с противоположной стороны уложена однофазная обмотка возбуждения возбудителя, которая подключена к обмотке якоря подвозбудителя через многофазный двухполупериодный выпрямитель, и дополнительная обмотка возбуждения возбудителя, подключенная к источнику постоянного тока, в пазы внутреннего аксиального магнитопровода со стороны обмотки возбуждения возбудителя и дополнительной обмотки возбуждения возбудителя уложена многофазная обмотка якоря возбудителя, а с противоположной стороны уложена однофазная обмотка возбуждения основного генератора, которая подключена к обмотке якоря возбудителя через многофазный двухполупериодный выпрямитель. В пазы бокового аксиального магнитопровода с одной активной торцовой поверхностью уложена многофазная обмотка якоря основного генератора.

Существенными недостатками такой машины-генератора являются значительные потери энергии из-за большого количества ступеней преобразования энергии (преобразование энергии в АДБЭМГ осуществляется в трех электрических машинах: подвозбудителе, возбудителе и основном генераторе), сложность конструкции и неудовлетворительные массогабаритные показатели.

Наиболее близким к заявляемому изобретению по технической сущности и принятым авторами за прототип является аксиальный двухвходовый бесконтактный ветро-солнечный генератор (пат. РФ №2561504, авторы Гайтов Б.Х., Кашин Я.М. и др.), содержащий корпус, возбудитель и основной генератор, установленные на одном валу, закрепленном в корпусе в подшипниковых узлах, при этом возбудитель состоит из индуктора возбудителя и аксиального магнитопровода с обмоткой якоря возбудителя, основной генератор состоит из бокового аксиального магнитопровода с одной активной торцовой поверхностью, в пазы которого уложена обмотка якоря основного генератора, и внутреннего аксиального магнитопровода с двумя активными торцовыми поверхностями, в пазы которого со стороны бокового аксиального магнитопровода уложена обмотка возбуждения основного генератора, причем боковой аксиальный магнитопровод с одной активной торцовой поверхностью жестко установлен в корпусе, а внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями установлен посредством диска на валу с возможностью вращения относительно бокового аксиального магнитопровода с одной активной торцовой поверхностью. Индуктор возбудителя в известном генераторе выполнен из постоянного многополюсного магнита и однофазной дополнительной обмотки возбуждения возбудителя, причем постоянный многополюсный магнит индуктора возбудителя выполнен с пазами, многосекционным, неподвижным и жестко установлен в корпусе, а однофазная дополнительная обмотка возбуждения возбудителя уложена в пазы между секциями постоянного многополюсного магнита индуктора возбудителя и подключена к источнику постоянного тока, при этом внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями с пазами установлен в корпусе между постоянным многополюсным магнитом индуктора возбудителя с дополнительной обмоткой возбуждения возбудителя и боковым аксиальным магнитопроводом с одной активной торцовой поверхностью с возможностью вращения относительно постоянного многополюсного магнита индуктора возбудителя с дополнительной обмоткой возбуждения возбудителя.

Генерируемое в известном аксиальном двухвходовом ветро-солнечном генераторе за счет преобразования механической энергии вращения напряжение пропорционально скорости вращения ротора относительно неподвижного корпуса:

где С - конструктивный коэффициент, w1 - скорость вращения ротора относительно неподвижного корпуса, прямо пропорциональная продольной составляющей скорости набегающего воздушного потока; Ф - магнитный поток возбуждения. При малой продольной составляющей скорости набегающего воздушного потока известный аксиальный двухвходовый ветро-солнечный генератор не выходит на свою номинальную мощность, что приводит к уменьшению его КПД.

Недостатком известного аксиального двухвходового ветро-солнечного генератора является низкий КПД при малой продольной составляющей скорости набегающего воздушного потока вследствие наличия только одной степени свободы, т.е установленные на валу элементы магнитной системы генератора, образующие ротор (внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями, в пазы которого со стороны бокового аксиального магнитопровода с одной активной торцовой поверхностью уложена обмотка возбуждения основного генератора, а со стороны индуктора возбудителя уложена обмотка якоря возбудителя), вращаются относительно продольной оси (оси вращения ротора) в одну сторону с угловой скоростью, прямо пропорциональной продольной составляющей скорости набегающего воздушного потока.

Корпус известного аксиального двухвходового ветро-солнечного генератора с установленными в нем постоянным многосекционным многополюсным магнитом индуктора возбудителя и боковым аксиальным магнитопроводом с многофазной обмоткой якоря основного генератора неподвижен, что не позволяет увеличить взаимную скорость вращения элементов магнитной системы генератора, установленных на роторе, относительно элементов магнитной системы генератора, установленных в корпусе, при неизменной по величине продольной составляющей скорости набегающего воздушного потока и, следовательно, снижает его энергоэффективность, т.е. уменьшает КПД, при малой продольной составляющей скорости набегающего воздушного потока.

Задачей предлагаемого изобретения является создание аксиального трехвходового ветро-солнечного генератора с высокой энергоэффективностью.

Техническим результатом заявленного изобретения является обеспечение возможности увеличения КПД за счет увеличения взаимной скорости вращения элементов магнитной системы генератора, установленных на роторе, относительно элементов магнитной системы генератора, установленных в корпусе, при неизменной величине продольной составляющей скорости набегающего воздушного потока.

Технический результат достигается тем, что в предлагаемом аксиальном трехвходовом ветро-солнечном генераторе, содержащем корпус, возбудитель и основной генератор, установленные на одном валу, закрепленном в корпусе в подшипниковых узлах, при этом в корпусе с одной стороны жестко закреплен постоянный многосекционный многополюсный магнит индуктора возбудителя, между секциями которого выполнены пазы, в которые уложена однофазная дополнительная обмотка возбуждения возбудителя, а с противоположной стороны жестко закреплен боковой аксиальный магнитопровод с одной активной торцовой поверхностью, в пазы которого уложена многофазная обмотка якоря основного генератора, при этом на валу между постоянным многосекционным многополюсным магнитом индуктора возбудителя с однофазной дополнительной обмоткой возбуждения возбудителя и боковым аксиальным магнитопроводом с одной активной торцовой поверхностью жестко закреплен посредством диска внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями, в пазы которого со стороны бокового аксиального магнитопровода уложена однофазная обмотка возбуждения основного генератора, а со стороны постоянного многосекционного многополюсного магнита индуктора возбудителя уложена многофазная обмотка якоря возбудителя, при этом однофазная обмотка возбуждения основного генератора соединена с многофазной обмоткой якоря возбудителя через многофазный двухполупериодный выпрямитель, а внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями выполнен с возможностью вращения относительно постоянного многосекционного многополюсного магнита индуктора возбудителя с однофазной дополнительной обмоткой возбуждения возбудителя и бокового аксиального магнитопровода с одной активной торцовой поверхностью, при этом корпус генератора выполняется в форме цилиндра, к внешнему основанию которого прикрепляется ступица ветроколеса, а в средней части боковой поверхности корпуса генератора устанавливаются токосъемные кольца, соединенные с многофазной обмоткой якоря основного генератора и однофазной дополнительной обмоткой возбуждения возбудителя, при этом корпус генератора устанавливается внутри совмещенной стационарной подшипниковой опоры с возможностью вращения относительно внутреннего магнитопровода с двумя активными торцовыми поверхностями вокруг их общей оси симметрии, причем совмещенная стационарная подшипниковая опора состоит из корпуса опоры с двумя посадочными желобами и двух шарикоподшипников с наружными кольцами, посредством которых шарикоподшипники фиксируются в посадочных желобах корпуса опоры, при этом внутренние кольца шарикоподшипников выполняются совмещенными с корпусом генератора в форме желобов, расположенных на боковой поверхности корпуса генератора вдоль его оснований напротив посадочных желобов корпуса опоры, в нижней внутренней части которой по центру напротив токосъемных колец устанавливаются скользящие контакты.

Предлагаемое изобретение, выполняя функцию суммирования и преобразования механической энергии (например, энергии ветра) и электрической энергии постоянного тока (например, энергии Солнца, преобразованной фотоэлектрическими преобразователями в электрическую энергию постоянного тока) в электрическую энергию многофазного переменного тока, как и прототип, в то же время в отличие от него позволяет повысить энергоэффективность за счет увеличения КПД путем обеспечения возможности увеличения взаимной скорости вращения элементов магнитной системы, установленных на роторе, относительно элементов магнитной системы, установленных на корпусе, что достигается тем, что корпус генератора выполняется в форме цилиндра, к внешнему основанию которого прикрепляется ступица ветроколеса, и устанавливается внутри совмещенной стационарной подшипниковой опоры с возможностью вращения относительно ротора (внутреннего магнитопровода с двумя активными торцовыми поверхностями, в пазы которых уложены многофазная обмотка якоря возбудителя и однофазная обмотка возбуждения основного генератора) вокруг их общей оси симметрии, причем совмещенная стационарная подшипниковая опора состоит из корпуса опоры с двумя посадочными желобами и двух шарикоподшипников с наружными кольцами, посредством которых шарикоподшипники фиксируются в посадочных желобах корпуса опоры, при этом внутренние кольца шарикоподшипников выполняются совмещенными с корпусом генератора в форме желобов, расположенных на боковой поверхности корпуса генератора вдоль его оснований напротив посадочных желобов корпуса опоры. Возможность подачи генерируемого предлагаемым аксиальным трехвходовым ветро-солнечным генератором напряжения в сеть обеспечивается тем, что в средней части боковой поверхности корпуса генератора устанавливаются токосъемные кольца, соединенные с многофазной обмоткой якоря основного генератора и однофазной дополнительной обмоткой возбуждения возбудителя, а в нижней внутренней части совмещенной стационарной подшипниковой опоры по центру напротив токосъемных колец устанавливаются скользящие контакты.

На фиг. 1 представлен общий вид предлагаемой аксиального трехвходового ветро-солнечного генератора в разрезе и его вид справа, на фиг. 2 - нижняя часть совмещенной стационарной подшипниковой опоры с нижней частью корпуса с сегментами желобов совмещенных внутренних колец шарикоподшипников, на фиг. 3 - электрическая схема предлагаемого аксиального трехвходового аксиального ветро-солнечного генератора, на фиг. 4 - зависимость КПД генератора от полезной мощности и взаимной скорости вращения элементов магнитной системы, установленных на роторе, относительно элементов магнитной системы, установленных в корпусе.

Аксиальный трехвходовый ветро-солнечный генератор содержит корпус 17, возбудитель и основной генератор, установленные на одном валу 7, закрепленном в корпусе 17 в подшипниковых узлах 6 и 13, при этом в корпусе 17 с одной стороны жестко закреплен постоянный многосекционный многополюсный магнит 15 индуктора возбудителя, между секциями которого выполнены пазы, в которые уложена однофазная дополнительная обмотка 14 возбуждения возбудителя, а с противоположной стороны жестко закреплен боковой аксиальный магнитопровод 9 с одной активной торцовой поверхностью, в пазы которого уложена многофазная обмотка 8 якоря основного генератора, при этом на валу 7 между постоянным многосекционным многополюсным магнитом 15 индуктора возбудителя с однофазной дополнительной обмоткой 14 возбуждения возбудителя и боковым аксиальным магнитопроводом 9 с одной активной торцовой поверхностью жестко закреплен посредством диска 5 внутренний аксиальный магнитопровод 12 с двумя активными торцовыми поверхностями, в пазы которого со стороны бокового аксиального магнитопровода 9 уложена однофазная обмотка 10 возбуждения основного генератора, а со стороны постоянного многосекционного многополюсного магнита 15 индуктора возбудителя уложена многофазная обмотка 11 якоря возбудителя, при этом однофазная обмотка 10 возбуждения основного генератора соединена с многофазной обмоткой 11 якоря возбудителя через многофазный двухполупериодный выпрямитель 4, а внутренний аксиальный магнитопровод 12 с двумя активными торцовыми поверхностями выполнен с возможностью вращения относительно постоянного многосекционного многополюсного магнита 15 индуктора возбудителя с однофазной дополнительной обмоткой 14 возбуждения возбудителя и бокового аксиального магнитопровода 9 с одной активной торцовой поверхностью. Корпус 17 генератора выполнен в форме цилиндра, к внешнему основанию которого прикреплена ступица 3 ветроколеса, а в средней части боковой поверхности корпуса 17 генератора установлены токосъемные кольца 16, соединенные с многофазной обмоткой 8 якоря основного генератора и однофазной дополнительной обмоткой 14 возбуждения возбудителя, при этом корпус 17 генератора установлен внутри совмещенной стационарной подшипниковой опоры 21 с возможностью вращения относительно внутреннего магнитопровода 12 с двумя активными торцовыми поверхностями вокруг их общей оси симметрии, причем совмещенная стационарная подшипниковая опора 21 состоит из корпуса 1 опоры с двумя посадочными желобами 22 и двух шарикоподшипников 18 с наружными кольцами 2, посредством которых шарикоподшипники 18 фиксируются в посадочных желобах 22 корпуса 1 опоры 21, при этом внутренние кольца шарикоподшипников 18 выполнены совмещенными с корпусом 17 генератора в форме желобов 20, расположенных на боковой поверхности корпуса 17 генератора вдоль его оснований напротив посадочных желобов 22 корпуса 1 опоры, в нижней внутренней части которой по центру напротив токосъемных колец 16 установлены скользящие контакты 19.

Аксиальный трехвходовый ветро-солнечный генератор работает следующим образом.

При подаче на электрический вход (однофазную дополнительную обмотку 14 возбуждения возбудителя) через скользящие контакты 19 и токосъемные кольца 16 постоянного тока (например, от фотоэлектрических преобразователей, преобразующих световую энергию Солнца в электрическую энергию постоянного тока) по однофазной дополнительной обмотке 14 возбуждения возбудителя протекает ток, при этом создается магнитный поток, направленный согласно с магнитным потоком, создаваемым постоянным многосекционным многополюсным магнитом 15 индуктора возбудителя. По принципу суперпозиции магнитных полей магнитные потоки, создаваемые однофазной дополнительной обмоткой 14 возбуждения возбудителя и постоянным многосекционным многополюсным магнитом 15 индуктора возбудителя, суммируются.

При подаче механической энергии вращения на первый механический вход (вал 7) внутренний аксиальный магнитопровод 12 с двумя активными торцовыми поверхностями с многофазной обмоткой 11 якоря возбудителя, жестко закрепленный между постоянным многосекционным многополюсным магнитом 15 индуктора возбудителя с однофазной дополнительной обмоткой 14 возбуждения возбудителя и боковым аксиальным магнитопроводом 9 с одной активной торцовой поверхностью посредством диска 5 на валу 7, закрепленном в корпусе 17 в подшипниковых узлах 6 и 13, вращается, при этом суммарный магнитный поток, созданный постоянным многосекционным многополюсным постоянным магнитом 15 индуктора возбудителя и однофазной дополнительной обмоткой 14 возбуждения возбудителя, взаимодействует с многофазной обмоткой 11 якоря возбудителя, уложенной в пазы внутреннего аксиального магнитопровода 12 с двумя активными торцовыми поверхностями со стороны постоянного многосекционного многополюсного магнита 15 индуктора возбудителя, и наводит в ней многофазную систему ЭДС, которая выпрямляется многофазным двухполупериодным выпрямителем 4 и подается на однофазную обмотку 10 возбуждения основного генератора, уложенную в пазы внутреннего аксиального магнитопровода 12 со стороны бокового аксиального магнитопровода 9. При этом в однофазной обмотке 10 возбуждения основного генератора создается магнитный поток.

Магнитный поток, созданный однофазной обмоткой 10 возбуждения основного генератора, взаимодействует с многофазной обмоткой 8 якоря основного генератора, уложенной в пазы бокового аксиального магнитопровода 9 с одной активной торцовой поверхностью, и наводит в ней многофазную систему ЭДС.

При подаче механической энергии вращения на второй механический вход (ступицу 3 ветроколеса, прикрепленную к внешнему основанию корпуса 17 генератора, выполненного в форме цилиндра) корпус 17 генератора с жестко закрепленными в нем одной стороны постоянным многосекционным многополюсным магнитом 15 индуктора возбудителя с однофазной дополнительной обмоткой 14 возбуждения возбудителя, а с противоположной стороны - боковым аксиальным магнитопроводом 9 с одной активной торцовой поверхностью, в пазы которого уложена многофазная обмотка 8 якоря основного генератора, установленный с возможностью вращения относительно внутреннего магнитопровода 12 с двумя активными торцовыми поверхностями вокруг их общей оси симметрии внутри совмещенной стационарной подшипниковой опоры 21, состоящей из корпуса 1 опоры с двумя посадочными желобами 22 и двух шарикоподшипников 18 с внутренними кольцами, выполненными совмещенными с корпусом 17 генератора в форме желобов 20, и с наружными кольцами 2, посредством которых шарикоподшипники 18 фиксируются в посадочных желобах корпуса 1 опоры, вращается относительно внутреннего аксиального магнитопровода 12 в противоположную сторону, увеличивая тем самым взаимную скорость вращения соответствующих элементов магнитной системы генератора друг относительно друга (постоянного многосекционного многополюсного магнита 15 индуктора возбудителя и однофазной дополнительной обмотки 14 возбуждения возбудителя относительно многофазной обмотки 11 якоря возбудителя, однофазной обмотки 10 возбуждения основного генератора относительно многофазной обмотки 8 якоря основного генератора) при неизменной по величине продольной составляющей скорости набегающего воздушного потока. В результате взаимная скорость вращения ротора с установленными на нем элементами магнитной системы относительно корпуса 17 с установленными на нем элементами магнитной системы равна сумме скоростей вращения ротора и корпуса 17 относительно их общей оси симметрии.

В результате описанных процессов происходит суммирование механической энергии вращения (например, энергии ветра), подаваемой на первый механический вход, механической энергии вращения (например, энергии ветра), подаваемой на второй механический вход, и электрической энергии постоянного тока (например, световой энергии Солнца, преобразованной фотоэлектрическими преобразователями в электрическую энергию постоянного тока) на входе, преобразование и выдача на выходе суммарной электрической энергии переменного тока.

Выходное напряжение генератора снимается с многофазной обмотки 8 якоря основного генератора и через токосъемные кольца 16, установленные в средней части боковой поверхности корпуса 17 генератора и соединенные с многофазной обмоткой 8 якоря основного генератора, и скользящие контакты 19, установленные в нижней внутренней части совмещенной стационарной подшипниковой опоры 21 по центру напротив токосъемных колец 16, подается в сеть.

Генерируемое в предлагаемом аксиальном трехвходовом ветро-солнечном генераторе за счет преобразования механической энергии вращения напряжение пропорционально сумме скорости вращения ротора и скорости вращения корпуса генератора относительно их общей оси симметрии (продольной оси вращения):

где с - конструктивный коэффициент, ω1 - скорость вращения ротора относительно продольной оси вращения, прямо пропорциональная скорости набегающего воздушного потока (ветра), ω2 - скорость вращения корпуса генератора относительно продольной оси вращения, прямо пропорциональная скорости набегающего воздушного потока (ветра), Ф - магнитный поток возбуждения.

На фиг. 4 показана зависимость КПД генератора от полезной мощности, отдаваемой в сеть.

КПД определяется по формуле:

где Р1 - потребляемая мощность, Р2 - полезная мощность, отдаваемая генератором в сеть, ΔР - суммарные потери в генераторе.

Полезная мощность, отдаваемая генератором в сеть, определяется по формуле:

где U - выходное напряжение генератора, m - число фаз генератора, с - конструктивный коэффициент, Ф - магнитный поток возбуждения, ω - взаимная скорость вращения элементов магнитной системы, установленных на роторе, относительно элементов магнитной системы, установленных на корпусе 17, равна сумме скоростей вращения ротора и корпуса 17 относительно их общей оси симметрии, I - ток нагрузки, cosϕ - коэффициент мощности.

Полезная мощность, отдаваемая генератором в сеть при невращающемся корпусе, определяется по формуле:

где m - число фаз генератора, с - конструктивный коэффициент, Ф - магнитный поток возбуждения, ω1 - скорость вращения ротора относительно продольной оси вращения, прямо пропорциональная скорости набегающего воздушного потока (ветра), I - ток нагрузки, cosϕ - коэффициент мощности.

Из фиг. 4 видно, что при малой скорости ветра полезная мощность Р2ω1, отдаваемая в сеть при невращающемся корпусе (а соответственно и КПД η1), ниже, чем полезная мощность Р (а соответственно и КПД η), отдаваемая в сеть при вращающемся корпусе. Конструкция предлагаемого аксиального трехвходового ветро-солнечного генератора позволяет по сравнению с прототипом при малых скоростях набегающего воздушного потока (т.е. ветра) обеспечить высокую энергоэффективность за счет повышения КПД путем увеличения взаимной скорости вращения элементов магнитной системы генератора друг относительно друга при неизменной по величине продольной составляющей набегающего воздушного потока (скорости ветра).

Аксиальный трехвходовый ветро-солнечный генератор, содержащий корпус, возбудитель и основной генератор, установленные на одном валу, закрепленном в корпусе в подшипниковых узлах, при этом в корпусе с одной стороны жестко закреплен постоянный многосекционный многополюсный магнит индуктора возбудителя, между секциями которого выполнены пазы, в которые уложена однофазная дополнительная обмотка возбуждения возбудителя, а с противоположной стороны жестко закреплен боковой аксиальный магнитопровод с одной активной торцовой поверхностью, в пазы которого уложена многофазная обмотка якоря основного генератора, при этом на валу между постоянным многосекционным многополюсным магнитом индуктора возбудителя с однофазной дополнительной обмоткой возбуждения возбудителя и боковым аксиальным магнитопроводом с одной активной торцовой поверхностью жестко закреплен посредством диска внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями, в пазы которого со стороны бокового аксиального магнитопровода уложена однофазная обмотка возбуждения основного генератора, а со стороны постоянного многосекционного многополюсного магнита индуктора возбудителя уложена многофазная обмотка якоря возбудителя, при этом однофазная обмотка возбуждения основного генератора соединена с многофазной обмоткой якоря возбудителя через многофазный двухполупериодный выпрямитель, а внутренний аксиальный магнитопровод с двумя активными торцовыми поверхностями выполнен с возможностью вращения относительно постоянного многосекционного многополюсного магнита индуктора возбудителя с однофазной дополнительной обмоткой возбуждения возбудителя и бокового аксиального магнитопровода с одной активной торцовой поверхностью, отличающийся тем, что корпус генератора выполнен в форме цилиндра, к внешнему основанию которого прикреплена ступица ветроколеса, а в средней части боковой поверхности корпуса генератора установлены токосъемные кольца, соединенные с многофазной обмоткой якоря основного генератора и однофазной дополнительной обмоткой возбуждения возбудителя, при этом корпус генератора установлен внутри совмещенной стационарной подшипниковой опоры с возможностью вращения относительно внутреннего магнитопровода с двумя активными торцовыми поверхностями вокруг их общей оси симметрии, причем совмещенная стационарная подшипниковая опора состоит из корпуса опоры с двумя посадочными желобами и двух шарикоподшипников с наружными кольцами, посредством которых шарикоподшипники зафиксированы в посадочных желобах корпуса опоры, при этом внутренние кольца шарикоподшипников выполнены совмещенными с корпусом генератора в форме желобов, расположенных на боковой поверхности корпуса генератора вдоль его оснований напротив посадочных желобов корпуса опоры, в нижней внутренней части которой по центру напротив токосъемных колец установлены скользящие контакты.
Аксиальный трехвходовый ветро-солнечный генератор
Аксиальный трехвходовый ветро-солнечный генератор
Аксиальный трехвходовый ветро-солнечный генератор
Аксиальный трехвходовый ветро-солнечный генератор
Аксиальный трехвходовый ветро-солнечный генератор
Источник поступления информации: Роспатент

Показаны записи 131-140 из 481.
26.08.2017
№217.015.dc47

Способ получения обогащенного крахмалопродукта

Изобретение относится к переработке растительного крахмалсодержащего сырья. Способ получения обогащенного крахмалопродукта включает подготовку крахмалосодержащего сырья, его смешивание с добавкой, повышающей пищевую ценность продукта, подачу смеси в экструдер, экструзию и нанесение на...
Тип: Изобретение
Номер охранного документа: 0002624207
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc98

Способ получения обогащенного крахмалопродукта

Изобретение относится к пищевой промышленности. Предложен способ получения обогащенного крахмалопродукта, включающий подготовку крахмалосодержащего сырья, его смешивание с добавкой, повышающей пищевую ценность продукта, подачу смеси в экструдер и экструзию. В качестве крахмалосодержащего сырья...
Тип: Изобретение
Номер охранного документа: 0002624209
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.ddf2

Способ восстановления рабочей поверхности стенок кристаллизатора

Изобретение относится к области металлургии и может быть использовано при восстановлении рабочей поверхности стенок кристаллизатора без его разборки. Способ включает очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам...
Тип: Изобретение
Номер охранного документа: 0002624878
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de07

Способ изготовления профильных шлифовальных кругов из сверхтвердых материалов

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении профильных шлифовальных кругов из сверхтвердых материалов, в частности алмаза, нитрида бора, на металлической связке. Осуществляют профилирование рабочей поверхности шлифовального круга с помощью...
Тип: Изобретение
Номер охранного документа: 0002624879
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e0de

Устройство для вычисления функции вида z=√x+ y

Изобретение относится к области вычислительной техники и предназначено для использования в специализированных вычислительных устройствах. Техническим результатом является повышение точности функционирования устройства. Устройство содержит счетчики, схему сравнения, блок управления, элементы И,...
Тип: Изобретение
Номер охранного документа: 0002625530
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e0e7

Линия подготовки зерна риса к переработке

Изобретение относится к сельскому хозяйству. Предложенная линия включает узел оперативного хранения зерна риса, узел дозирования и транспортирования зерна риса, узел дозирования и взвешивания зерна риса, узел первичной очистки зерна риса и узел окончательной очистки зерна риса. Линия...
Тип: Изобретение
Номер охранного документа: 0002625495
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e0f6

Способ определения термобарических параметров образования гидратов в многокомпонентной смеси

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов. Оно может быть использовано в нефтяной, газовой и химической промышленности для предотвращения образования...
Тип: Изобретение
Номер охранного документа: 0002625544
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e112

Арифметическое устройство

Изобретение относится к цифровой вычислительной технике и может применяться в составе арифметических устройств цифровых вычислительных машин. Техническим результатом является повышение точности умножения. Устройство содержит три сдвиговых регистра, два коммутационных блока, три...
Тип: Изобретение
Номер охранного документа: 0002625528
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e132

Способ повышения прочности детали с покрытием

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью импульсного электрического тока силой 2-5 кА, напряжением 2-3 В,...
Тип: Изобретение
Номер охранного документа: 0002625508
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e146

Сдобное печенье профилактического назначения

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Сдобное печенье профилактического назначения в качестве исходных компонентов включает пшеничную муку, воду в количестве, обеспечивающем влажность готового теста 16-17,5%, маргарин, яичный...
Тип: Изобретение
Номер охранного документа: 0002625572
Дата охранного документа: 17.07.2017
Показаны записи 131-140 из 248.
26.08.2017
№217.015.ddf2

Способ восстановления рабочей поверхности стенок кристаллизатора

Изобретение относится к области металлургии и может быть использовано при восстановлении рабочей поверхности стенок кристаллизатора без его разборки. Способ включает очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам...
Тип: Изобретение
Номер охранного документа: 0002624878
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de07

Способ изготовления профильных шлифовальных кругов из сверхтвердых материалов

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении профильных шлифовальных кругов из сверхтвердых материалов, в частности алмаза, нитрида бора, на металлической связке. Осуществляют профилирование рабочей поверхности шлифовального круга с помощью...
Тип: Изобретение
Номер охранного документа: 0002624879
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e0de

Устройство для вычисления функции вида z=√x+ y

Изобретение относится к области вычислительной техники и предназначено для использования в специализированных вычислительных устройствах. Техническим результатом является повышение точности функционирования устройства. Устройство содержит счетчики, схему сравнения, блок управления, элементы И,...
Тип: Изобретение
Номер охранного документа: 0002625530
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e0e7

Линия подготовки зерна риса к переработке

Изобретение относится к сельскому хозяйству. Предложенная линия включает узел оперативного хранения зерна риса, узел дозирования и транспортирования зерна риса, узел дозирования и взвешивания зерна риса, узел первичной очистки зерна риса и узел окончательной очистки зерна риса. Линия...
Тип: Изобретение
Номер охранного документа: 0002625495
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e0f6

Способ определения термобарических параметров образования гидратов в многокомпонентной смеси

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов. Оно может быть использовано в нефтяной, газовой и химической промышленности для предотвращения образования...
Тип: Изобретение
Номер охранного документа: 0002625544
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e112

Арифметическое устройство

Изобретение относится к цифровой вычислительной технике и может применяться в составе арифметических устройств цифровых вычислительных машин. Техническим результатом является повышение точности умножения. Устройство содержит три сдвиговых регистра, два коммутационных блока, три...
Тип: Изобретение
Номер охранного документа: 0002625528
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e132

Способ повышения прочности детали с покрытием

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью импульсного электрического тока силой 2-5 кА, напряжением 2-3 В,...
Тип: Изобретение
Номер охранного документа: 0002625508
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e146

Сдобное печенье профилактического назначения

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Сдобное печенье профилактического назначения в качестве исходных компонентов включает пшеничную муку, воду в количестве, обеспечивающем влажность готового теста 16-17,5%, маргарин, яичный...
Тип: Изобретение
Номер охранного документа: 0002625572
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e148

Способ получения многослойного композитного покрытия

Изобретение относится к способу высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие. Нижний слой покрытия наносят толщиной 100-150 мкм из механически активированного порошка Ni, средний слой - толщиной 500-900 мкм из...
Тип: Изобретение
Номер охранного документа: 0002625618
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e14c

Способ производства мучного кондитерского изделия безглютенового типа

Изобретение относится к пищевой промышленности, а именно к производству безглютеновых мучных кондитерских изделий. Способ производства мучного кондитерского изделия безглютенового типа в виде коржиков включает сбивание размягченного маргарина, внесение сладкого компонента,...
Тип: Изобретение
Номер охранного документа: 0002625569
Дата охранного документа: 17.07.2017
+ добавить свой РИД