×
20.01.2018
218.016.18ae

Результат интеллектуальной деятельности: СПОСОБ ГЕНЕРАЦИИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЙ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ В ТУРБОГЕНЕРАТОРЕ ТРЕХФАЗНОГО ТОКА

Вид РИД

Изобретение

№ охранного документа
0002636053
Дата охранного документа
20.11.2017
Аннотация: Изобретение относится к области электротехники и может быть использовано в электрических турбогенераторах переменного трехфазного тока с электромагнитным возбуждением и с дополнительными трехфазными обмотками на статоре и на роторе для генерации напряжений двух различных частот. Техническим результатом является обеспечение генерирования в дополнительной обмотке электроэнергии трехфазного тока промышленной частоты (50 Гц) при частоте вращения турбогенератора n=6000 об/мин одновременно с генерацией в основной обмотке статора турбогенератора электроэнергии трехфазного тока повышенной частоты (200 Гц). В турбогенератор трехфазного тока двух разных частот введен дополнительный комплект трехфазных обмоток, одна из которых размещается в общих пазах статора, а другая - на дополнительной части неявнополюсного ротора. Причем последняя через контактные кольца и щетки соединяется с регулируемым обратимым преобразователем частоты, который обеспечивает в турбогенераторе асинхронный режим с отрицательной частотой скольжения. Для исключения взаимного электромагнитного влияния основных и дополнительных трехфазных обмоток, размещенных как в пазах статора, так и на обеих частях ротора, их числа пар полюсов выбирают при соблюдении условия p>p. 1 з.п. ф-лы, 1 ил.

1.1. Область техники.

Изобретение относится к области электротехники, в частности, к электрическим синхронным генераторам переменного трехфазного тока с электромагнитным возбуждением и с дополнительными обмотками на статоре и на роторе для генерации напряжений двух различных частот.

1.2. Уровень техники.

Известен способ генерации переменного напряжения, используемый в синхронном турбогенераторе с электромагнитным возбуждением, состоящем из шихтованного магнитопровода (статора) с цилиндрической расточкой и пазами на внутренней ее поверхности, в которых размещена распределенная обмотка переменного трехфазного тока, и ферромагнитного ротора, расположенного внутри расточки статора и насаженного на вал, опирающийся своими концами на подшипники, один из концов которого соединен с приводным двигателем (турбиной) [1].

В пазах ферромагнитного ротора неявнополюсной конструкции размещена обмотка возбуждения постоянного тока, которая в свою очередь электрически соединена с вращающимся выпрямителем устройства бесщеточного возбуждения [2], жестко закрепленного на конце вала. Питание обмотки возбуждения постоянного тока осуществляется электроэнергией устройства бесщеточного возбуждения при вращении ротора от приводного двигателя.

В указанном турбогенераторе при вращении ротора в результате взаимодействия магнитного поля вращающейся обмотки возбуждения постоянного тока с обмоткой статора в ней индуктируется переменная трехфазная электродвижущая сила (э.д.с), которая в дальнейшем при подключении к внешней сети должна синхронизироваться по величине, частоте и фазе с напряжением внешней сети.

Величину первой (основной) гармоники э.д.с Е1 и ее частоту в общем случае определяют по формулам:

где:

- W - число витков в фазе обмотки статора;

- Ф1 - первая гармоника потокосцепления фазы обмотки статора, Вб;

- kоб.1 - обмоточный коэффициент;

- kc.1 - коэффициент скоса пазов;

- - частота переменной э.д.с, Гц;

- p1 - число пар полюсов обмотки статора и ротора;

- n1 - частота вращения ротора, об/мин.

В соответствии с формулой (2) для получения переменного трехфазного напряжения промышленной частоты 50 Гц максимально возможная частота вращения ротора n1 синхронного турбогенератора при р1=1 составляет n1=3000 об/мин [1].

Известно, что паровые (газовые) турбины, являющиеся приводными двигателями для турбогенератора, имеют наилучшие технико-экономические показатели (к.п.д., удельная мощность и др.) при более высоких частотах вращения n≥6000 об/мин [3].

Недостатком данного технического решения турбогенератора переменного напряжения промышленной частоты 50 Гц является то, что для его привода используют промежуточный механический редуктор [3], что приводит к увеличению массы, габаритов и стоимости всего турбоагрегата в целом.

Известен способ генерации переменных напряжений, реализуемый техническим решением, описанным в [4], согласно которому генерацию электроэнергии трехфазного тока повышенной частоты (200 Гц и более) осуществляют главным турбогенератором в составе судовой электроэнергетической системы (ЭЭС), вращение которого выполняют непосредственно от турбины при частоте вращения n≥6000 об/мин (аналог).

Недостатком указанного технического решения главного турбогенератора повышенной частоты является то, что для питания общесудовых потребителей в составе ЭЭС [4] трехфазным током промышленной частоты 50 Гц используют необходимые в этом случае преобразующие устройства мощностью, равной сумме полных мощностей упомянутых потребителей с учетом их возможных перегрузок.

Другим близким по технической сущности к заявляемому способу является способ, используемый в электромашинном преобразователе частоты с фазным ротором [1], в котором при вращении ротора от приводного двигателя, в т.ч. при более высокой частоте вращения, и при подаче со стороны ротора трехфазного напряжения одной частоты можно получать со стороны статора трехфазное напряжение другой частоты, в т.ч. промышленной частоты 50 Гц.

Наиболее близким по технической сущности является способ управления автономным асинхронным генератором [5] (прототип), в цепи трехфазной обмотки ротора которого используют регулируемый преобразователь частоты. При изменяющейся, например, при увеличении частоты вращения приводного двигателя неизменность частоты и амплитуды индуктируемой э.д.с. в трехфазной обмотке статора поддерживают путем соответствующего регулирования частоты и амплитуды трехфазного тока на выходе упомянутого преобразователя частоты.

Однако в указанном прототипе отсутствует возможность генерации переменных напряжений двух различных частот.

Задачей заявляемого технического решения является расширение функциональных возможностей турбогенератора трехфазного тока.

Технический результат заявляемого технического решения состоит в том, что при использовании предложенного способа в турбогенераторе трехфазного тока при более высокой частоте вращения n1=6000 об/мин наряду с генерацией электроэнергии трехфазного тока повышенной частоты 200 Гц, одновременно осуществляют генерацию электроэнергии трехфазного тока промышленной частоты 50 Гц.

Указанный технический результат достигается тем, что в заявляемом способе генерации переменных напряжений двух различных частот в турбогенераторе трехфазного тока, содержащем ферромагнитный шихтованный статор с цилиндрический расточкой, на внутренней поверхности которой в пазах размещены две распределенные трехфазные обмотки - основная и дополнительная - с числом пар полюсов соответственно p1 и р2, и вращающийся ферромагнитный ротор (основная часть) цилиндрической неявнополюсной конструкции, расположенный внутри расточки статора, на наружной поверхности которого в пазах размещена обмотка возбуждения постоянного тока с числом пар полюсов р1, подключенная к выходу устройства бесщеточного возбуждения, предусмотрены следующие отличия - что в неявнополюсную конструкцию ферромагнитного ротора вводят дополнительную часть с размещенной в ее пазах трехфазной обмоткой возбуждения с числом пар полюсов р2, подключенной через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты, причем числа пар полюсов обеих обмоток, размещенных как на статоре, так и на роторе, выбирают с соблюдением условия p1>p2, а также, угловую частоту вращения основной волны намагничивающей силы трехфазной обмотки возбуждения, размещенной в пазах дополнительной части ротора, поддерживают в противоположном направлении всегда ниже угловой частоты вращения ротора, что позволяет при более высокой частоте вращения расширить функциональные возможности турбогенератора трехфазного тока.

1.3. Краткое описание чертежей.

Предложенный способ поясняется чертежом, на котором изображена блок-схема (фиг. 1) построения турбогенератора трехфазного тока, реализующего предложенный способ генерации переменных напряжений двух различных частот.

В представленной блок-схеме (фиг. 1) используют следующие обозначения:

1 - статор;

1.1 - основная трехфазная обмотка;

1.2 - дополнительная трехфазная обмотка;

2 - трансформатор;

3 - выключатель;

4 - обратимый преобразователь частоты;

4.1 - трехфазный вход;

4.2 - трехфазный выход;

5 - выключатель;

6 - внешняя сеть повышенной частоты;

7 - выключатель

8 - внешняя сеть промышленной частоты;

9 - основная часть ротора;

10 - дополнительная часть ротора;

11 - приводной двигатель (турбина);

12 - обмотка возбуждения;

13 - трехфазная обмотка возбуждения;

14 - устройство бесщеточного возбуждения.

1.4. Раскрытие изобретения.

Предлагаемый способ заключается в том, что в неявнополюсную конструкцию ферромагнитного ротора, расположенного внутри расточки статора, введена дополнительная часть с размещенной в ее пазах трехфазной обмоткой возбуждения, а также введена дополнительная трехфазная обмотка на статоре, число пар полюсов которой отличается от числа пар полюсов основных обмоток, расположенной на статоре и на основной части ротора. Причем в цепь трехфазной обмотки, размещенной на дополнительной части ротора, подключается обратимый преобразователь частоты (ОПЧ).

Турбогенератор трехфазного тока, имеет ферромагнитный шихтованный статор 1 с цилиндрической расточкой и пазами на внутренней ее поверхности, в которых наряду с основной трехфазной обмоткой 1.1 напряжения повышенной частоты размещают дополнительную трехфазную обмотку 1.2 напряжения промышленной частоты, распределенную в общих пазах (фиг. 1).

Основную обмотку 1.1, предназначенную для генерации переменного трехфазного напряжения, в т.ч. высоковольтного, повышенной частоты и имеющую число пар полюсов р1=2, соединяют через согласующий трансформатор 2 и выключатель 3 с трехфазным входом 4.1 обратимого преобразователя частоты 4, а также через выключатель 5 соединяют с внешней сетью 6 повышенной частоты.

Дополнительную трехфазную обмотку 1.2, предназначенную для генерации переменного трехфазного напряжения промышленной частоты и имеющую число пар полюсов р2=1, соединяют через выключатель 7 с внешней сетью 8 промышленной частоты 50 Гц.

Внутри расточки статора 1 располагают цилиндрический ротор из ферромагнитного материала, состоящий из основной 9 и дополнительной 10 частей ротора неявнополюсной конструкции, насаженных на общий вал, опирающийся своими концами на подшипники (на рис. не показано), один из концов которого соединяют непосредственно с приводным двигателем (турбиной) 11.

На наружной поверхности каждой части ротора имеются пазы. В пазах основной части ротора 9 неявнополюсной конструкции размещают распределенную обмотку возбуждения 12 постоянного тока с числом пар полюсов p1=2, а в пазах дополнительной части ротора 10 (шихтованного) неявнополюсной конструкции размещают распределенную трехфазную обмотку возбуждения 13 с числом пар полюсов р2=1.

Обмотку возбуждения 12 постоянного тока электрически соединяют с выходом устройства бесщеточного возбуждения 14, расположенного на одном из концов вала. Трехфазную обмотку возбуждения 13 электрически соединяют с тремя контактными кольцами, расположенными и жестко закрепленными на другом конце вала (на рис. не показано).

Контактные кольца посредством трех неподвижных электрических щеток (на рис. не показано) пофазно соединяют с трехфазным выходом 4.2 обратимого преобразователя частоты 4, обладающего возможностью регулирования амплитуды и частоты выходного тока.

Турбогенератор трехфазного тока по предложенному способу генерации переменных напряжений двух различных частот работает следующим образом.

Предварительно приводным двигателем (турбиной) 11 производят пуск и разгон турбогенератора до частоты вращения и осуществляют подключение цепи электропитания обмотки возбуждения 12 постоянного тока к устройству бесщеточного возбуждения 14.

В результате взаимодействия магнитного поля вращающейся обмотки возбуждения 12 постоянного тока с основной обмоткой 1.1 статора 1 в последней возникает переменное трехфазное напряжение повышенной частоты которое через согласующий трансформатор 2 и выключатель 3 поступает на трехфазный вход 4.1 обратимого преобразователя частоты 4.

Обратимый преобразователь частоты 4 преобразует переменное трехфазное напряжение повышенной частоты в трехфазное напряжение промышленной частоты которое при плавном увеличении его амплитуды и частоты от нуля до номинального значения через трехфазный выход 4.2, электрические щетки и контактные кольца поступает в трехфазную обмотку возбуждения 13 дополнительной части ротора 10.

Далее намагничивающие токи, возникающие в трехфазной обмотке возбуждения 13, создают пространственную основную волну (гармонику) намагничивающих сил на поверхности дополнительной части ротора 10. При этом порядок чередования фаз в трехфазной обмотке возбуждения 13 выбирают таким же, как и в способе прототипа, т.е. таким, при котором угловая частота вращения основной волны намагничивающих сил направлена в противоположную сторону относительно направления вращения ротора по формуле (2).

Причем в заявляемом техническом решении в отличие от прототипа, используют асинхронный режим турбогенератора с отрицательной частотой скольжения, при котором угловую частоту вращения основной волны намагничивающих сил трехфазной обмотки возбуждения 13 поддерживают всегда ниже угловой частоты вращения ротора.

С целью исключения взаимного электромагнитного влияния, обусловленного действием в общем ферромагнитном статоре 1 основных волн намагничивающих сил обеих обмоток 1.1; 1.2, расположенных как на статоре, так и на обеих частях ротора 12; 13, выбирают их числа пар полюсов с соблюдением условия p1>p2. Тем самым результирующие индуктируемые трехфазные э.д.с. взаимной индукции в каждой из обмоток от действия трехфазных токов другой обмотки, расположенной либо на общем ферромагнитном статоре 1, либо на основной 9 или дополнительной 10 части ротора, равны нулю.

В результате взаимодействия суммарного магнитного поля от двух вращающихся обмоток возбуждения 12 и 13 с основной 1.1 и дополнительной 1.2 обмотками статора 1 в них индуктируются переменные трехфазные э.д.с. вращения:

- с частотой - в основной обмотке 1.1;

- с частотой скольжения - в дополнительной обмотке 1.2 (знак - минус характеризует передачу энергии в сеть).

Затем генерируемая электроэнергия в упомянутых обмотках 1.1; 1.2 статора 1 в виде трехфазных токов двух различных частот через выключатели 5; 7 после их синхронизации по частоте и напряжению поступает во внешние сети 6; 8 переменного напряжения соответствующей частоты.

Кроме того, в период пуска и разгона турбогенератора до угловой частоты вращения ω1 и после перевода его в асинхронный режим с отрицательной частотой скольжения в трехфазной обмотке возбуждения 13, расположенной на дополнительной части ротора 10, индуктируется переменная противо-э.д.с. с частотой Под действием этой противо-э.д.с. электроэнергия трехфазных токов через контактные кольца и щетки поступает на трехфазный выход 4.2 обратимого преобразователя частоты 4.

Указанная электроэнергия после обратного преобразования в трехфазный ток с частотой поступает на трехфазный вход 4.1 ОПЧ 4 и через выключатель 3, согласующий трансформатор 2 и выключатель 5 после синхронизации по частоте и напряжению передается во внешнюю сеть 6 повышенной частоты

Таким образом, предложенный способ генерации переменных напряжений двух различных частот в турбогенераторе трехфазного тока обеспечивает при частоте вращения ротора n1=6000 об/мин заявленный технический результат, а именно: генерацию трехфазных напряжений повышенной частоты - в основной обмотке статора и генерацию трехфазных напряжений промышленной частоты - в дополнительной обмотке статора.

Литература.

1. Вольдек А.И. Электрические машины. М.: Энергия, 1978, - с. с. 366; 375; 593; 430; 619.

2. Яковлев Г.С. Судовые электроэнергетические системы. Л.: Судостроение, 1987, - с. 61.

3. Турбогенераторы блочные типа ТГ. Продукция ОАО «Калужский турбинный завод»; интернет: www.oaoktz.ru.

4. Судовая электроэнергетическая система переменного напряжения повышенной частоты с системой электродвижения и матричными преобразователями частоты. Александров В.П., Скворцов Б.А., Хомяк В.А. Патент РФ № RU 2510781 С2, кл. H02J 3/34 от 17.07.2012.

5. Способ управления автономным асинхронным генератором. Мещеряков В.Н., Иванов А.Б., Куликов А.И. Патент РФ 2213409, кл. Н02Р 9/00 от 26.04.2001.


СПОСОБ ГЕНЕРАЦИИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЙ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ В ТУРБОГЕНЕРАТОРЕ ТРЕХФАЗНОГО ТОКА
СПОСОБ ГЕНЕРАЦИИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЙ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ В ТУРБОГЕНЕРАТОРЕ ТРЕХФАЗНОГО ТОКА
Источник поступления информации: Роспатент

Показаны записи 271-280 из 367.
13.09.2018
№218.016.8765

Установка для обезвреживания судовых балластных вод

Изобретение относится к области очистки морской воды, а именно к устройствам для обезвреживания судовых балластных вод. Установка может быть использована в качестве штатного судового оборудования для обезвреживания балластной воды, а также как образец-прототип технологии при проведении...
Тип: Изобретение
Номер охранного документа: 0002666860
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.88f3

Дополнительное пропульсивное устройство судна, совмещенное с подруливающим устройством

Изобретение относится к области судостроения, а именно к конструкциям дополнительного пропульсивного устройства судна. Дополнительное пропульсивное устройство судна, совмещенное с его подруливающим устройством, содержит по меньшей мере один лопастной движитель, расположенный в корпусе судна с...
Тип: Изобретение
Номер охранного документа: 0002667421
Дата охранного документа: 19.09.2018
26.09.2018
№218.016.8bf7

Аппаратно-имитационный комплекс систем управления и элементов электроэнергетических систем для отладки судовых систем управления объектов арктической морской техники

Аппаратно-имитационный комплекс систем управления и элементов электроэнергетических систем (ЭЭС) для отладки судовых систем управления объектов арктической морской техники содержит модуль выполнения расчетов, модели систем управления и элементов ЭЭС, программный имитатор локальной системы...
Тип: Изобретение
Номер охранного документа: 0002668004
Дата охранного документа: 25.09.2018
26.09.2018
№218.016.8c01

Устройство для измерения осадки плавучего средства на волнении

Изобретение относится к области судостроения и касается вопроса создания технических средств контроля осадки судна на волнении и на спокойной воде как в дрейфе, так и на ходу, включая аварийные ситуации. Предложено устройство для измерения осадки плавучего средства, содержащее два...
Тип: Изобретение
Номер охранного документа: 0002668003
Дата охранного документа: 25.09.2018
11.10.2018
№218.016.8f9e

Композиция для светопоглощающего покрытия

Изобретение относится к покрытиям, обладающим способностью поглощать световое излучение определенного диапазона частот. Композиция покрытия включает в себя неорганический пигмент, полимерное связующее, отвердитель, растворители, и имеет следующий состав, в вес. %: уретановый каучук 7-10,...
Тип: Изобретение
Номер охранного документа: 0002669097
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.8fbf

Сопловой аппарат реверсивной турбины

Сопловой аппарат реверсивной турбины включает сопловой аппарат прямого хода, расположенный на нижнем ярусе турбины, сопловой аппарат заднего хода, расположенный в верхнем ярусе турбины, и промежуточный корпус. На внешней стороне промежуточного корпуса закреплены секторы соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002669223
Дата охранного документа: 09.10.2018
11.10.2018
№218.016.901f

Способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом

Изобретение относится к области морского транспорта и способам проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Способ включает приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия,...
Тип: Изобретение
Номер охранного документа: 0002669158
Дата охранного документа: 08.10.2018
17.10.2018
№218.016.92e3

Источник питания для станций безобмоточного размагничивания кораблей

Изобретение относится к области размагничивания кораблей. Источник питания для станций безобмоточного размагничивания кораблей содержит неуправляемый трехфазный источник питания переменного тока, зарядное устройство, емкостной накопитель энергии, датчик напряжения, мостовой коммутатор, датчик...
Тип: Изобретение
Номер охранного документа: 0002669761
Дата охранного документа: 15.10.2018
28.10.2018
№218.016.97a8

Способ получения n-изопропил-n'-фенил-п-фенилендиамина

Изобретение относится к области органической химии, конкретно к способу получения N-изопропил-N'-фенил-п-фенилендиамина путем алкилирования п-аминодифениламина. Способ характеризуется тем, что в качестве алкилирующего агента используют изопропилбромид, а в качестве акцептора для связывания...
Тип: Изобретение
Номер охранного документа: 0002670975
Дата охранного документа: 26.10.2018
01.11.2018
№218.016.988b

Грузовая пневматическая шина радиального типа

Изобретение относится к автомобильной промышленности. Грузовая пневматическая шина радиального типа с протектором, металлокордным каркасом, брекерной конструкцией содержит четыре либо три пересекающихся под углом слоя брекера (1) из высокопрочных стальных кордов. По меньшей мере два слоя...
Тип: Изобретение
Номер охранного документа: 0002671112
Дата охранного документа: 29.10.2018
Показаны записи 271-272 из 272.
24.07.2018
№218.016.73f6

Судовая электроэнергетическая система переменного напряжения с турбогенераторами двух различных частот

Использование: в области электроэнергетики. Техническим результатом является существенное снижение по сравнению с прототипом расчетной полной мощности, следовательно, массы и габаритов преобразующих устройств в составе электросети низкого напряжения промышленной частоты, а также улучшение...
Тип: Изобретение
Номер охранного документа: 0002661902
Дата охранного документа: 23.07.2018
29.06.2019
№219.017.9f77

Устройство формирования и регулирования напряжения матричного непосредственного преобразователя частоты с высокочастотной синусоидальной шим

Предложено устройство формирования и регулирования высокого напряжения матричного непосредственного преобразователя частоты (НПЧ) каскадного типа с высокочастотной синусоидальной широтно-импульсной модуляцией (ШИМ), построенного на полностью управляемых ключах IGBT-модулей с двухсторонней...
Тип: Изобретение
Номер охранного документа: 0002422975
Дата охранного документа: 27.06.2011
+ добавить свой РИД