×
20.01.2018
218.016.178a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СДВИГА КРИТИЧЕСКОЙ ТЕМПЕРАТУРЫ ХРУПКОСТИ СТАЛЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ ОХРУПЧИВАНИЯ КОРПУСОВ РЕАКТОРОВ ТИПА ВВЭР

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники. Способ определения сдвига критической температуры хрупкости сталей включает изготовление образцов, определение их твердости в исходном состоянии и после облучения быстрыми нейтронами, определение сдвига температуры хрупко-вязкого перехода, причем изготавливают образцы стали с переменной концентрацией одного из компонентов по одному из габаритов образца, их макротвердость в точках с одинаковой концентрацией изменяемого компонента определяют методом Бринелля, а сдвиг температуры хрупко-вязкого перехода ΔТк для каждой точки определяют по формуле: ΔТк=А+В(ΔНВ)где ΔНВ=НВ-НВ, НВ - твердость стали после облучения, МПа, НВ - твердость стали в исходном состоянии, МПа, А=100°C, В=0,00012°C/(МПа). Изобретение позволяет снизить трудоемкость и время определения сдвига критической температуры хрупкости при разработке сталей для корпусов реакторов типа ВВЭР. 5 з.п. ф-лы.

Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники.

Основным процессом, лимитирующим срок службы конструкций атомной техники, в частности, корпусов атомных энергетических реакторов, изготавливаемых из малолегированных углеродистых сталей, является радиационное охрупчивание - уменьшение пластичности металла, поскольку в результате нейтронного облучения в сочетании со старением происходит сдвиг критической температуры хрупкости стали TK в область более высоких температур, что повышает вероятность хрупкого разрушения.

Известно, что химическими элементами, наиболее сильно влияющими на охрупчивание сталей корпусов реакторов ВВЭР-1000, являются никель и фосфор, а также марганец. Поэтому известные способы прогнозирования ресурсоспособности сталей для атомной техники основаны на определении связи распределения указанных веществ в металлической матрице и величины сдвига критической температуры хрупкости после облучения.

Известен способ прогнозирования степени охрупчивания теплостойкой стали, включающий:

- определение методом оже-электронной микроскопии уровня зернограничных сегрегаций фосфора в образцах-свидетелях (термокомплектах), изготовленных из стали исследуемого корпуса реактора, подвергавшихся воздействию рабочих температур в составе изделия (около 320°C) с выдержками в течение различного времени (от ~50000 до ~240000 ч);

- построение кинетической кривой (время воздействия - концентрация фосфора) и определение ее параметров;

- определение методом экстраполяции уровня накопления сегрегации фосфора на момент времени окончания эксплуатации реактора или на момент времени продленного ресурса;

- изготовление экспериментальных образцов из стали, близкой по составу и микроструктуре к стали исследуемого корпуса реактора;

- проведение охрупчивающего отжига экспериментальных образцов в исходном состоянии при температуре максимального развития отпускной хрупкости около 500°C в течение различного времени от 500 до 3000 ч;

- определение сдвигов критической температуры хрупкости по механическим испытаниям (образцы Шарпи) и уровня зернограничных сегрегаций фосфора на экспериментальных образцах, подвергшихся отжигу;

- построение калибровочную зависимость сдвига критической температуры хрупкости от зернограничной концентрации фосфора;

- определение корреляции между сдвигом критической температуры хрупкости и уровнем сегрегаций;

- определение по калибровочной зависимости экстраполяцией степени охрупчивания исследуемой стали значения для времени окончания эксплуатации реактора или на момент времени продленного ресурса;

- вывод о ресурсоспособности стали и о возможности эксплуатации изделия на продленный ресурс.

(RU 2508532, G01N 3/28, G01N 33/20, C21D 1/26, опубликовано 27.02.2014)

Недостатком известного способа, основанного на связи величины зернограничных сегрегаций фосфора и критической температуры хрупкости исследуемой стали, является ограничение его использования только для прогнозирования необлучаемых конструктивных элементов в атомной технике.

Известен способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000, облучаемых потоком нейтронов в процессе эксплуатации, включающий:

- изготовление образцов-свидетелей из исследуемой стали корпуса реактора;

- ускоренное облучение части образцов-свидетелей потоком быстрых нейтронов до флюенса, соответствующего дозе облучения на прогнозируемый срок (время окончания эксплуатации реактора или время продленного ресурса);

- определение критических температур хрупкости TK необлученных и облученных образцов-свидетелей и определение сдвига критической температуры хрупкости ΔTF, обусловленного облучением;

- определение величины составляющей ΔТФЛАКС, обусловленной различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов;

- определение методом оже-электронной спектроскопии уровня зернограничных сегрегаций фосфора в необлученных образцах;

- построение по кинетическому уравнению Мак Лина кривой накопления сегрегаций фосфора в зависимости от времени эксплуатации реактора;

- определение экстраполяцией уровень зернограничных сегрегаций фосфора на прогнозируемый срок эксплуатации стали;

- определение составляющей ΔTT, обусловленной протеканием сегрегационных процессов за длительный период при рабочей температуре, на основании экспериментальной калибровочной зависимости между уровнем зернограничной сегрегации и сдвигом критической температуры хрупкости;

- определение общего сдвига критической температуры хрупкости, лимитирующий ресурс корпуса реактора в отдаленном периоде как сумму сдвигов ΔTK=ΔTF+ΔТФЛАКС+ΔTT;

- определение ресурса корпуса по величине общего сдвига критической температуры хрупкости.

(RU 2534045, G21C 17/00, опубликовано 27.11.2014)

Недостатком известного способа, основанного на связи величины зернограничных сегрегаций фосфора и критической температуры хрупкости исследуемой стали, является высокая трудоемкость и длительность его осуществления. При определении критической температуры хрупкости одного состава необходимо испытать 20-30 образцов на ударный изгиб, а при изучении влияния различных концентраций только одного элемента число образцов увеличивается в 4-6 раз. В связи с этим исследование влияния состава стали на их радиационную стойкость весьма трудоемко. При этом на показателе радиационной стойкости сильно сказывается неоднородность распределения базовых легирующих элементов и примесей в металле образцов с различным содержанием исследуемого элемента. Кроме того, при большом числе образцов, вследствие неравномерного распределения нейтронного потока в пространстве, невозможно обеспечить одинаковые условия облучения всех образцов.

Кроме того, для определения величины составляющей ΔTT необходимы экспериментальные сведения о зависимости между уровнем зернограничной сегрегации и сдвигом критической температуры хрупкости для конкретного состава исследуемой стали, что требует значительного объема дополнительных исследований и ограничивает его применение для определения ресурсоспособности новых сталей для корпусов реакторов ВВЭР-1000.

Наиболее близким по технической сущности является способ определения сдвига температуры хрупко-вязкого перехода стали, включающий изготовление и испытание образцов в исходном состоянии и после облучения быстрыми нейтронами, определение температур хрупко-вязкого перехода и параметров, характеризующих состояние материала образцов, причем в качестве параметра, характеризующего деградацию материала после облучения, используют микротвердость материала, оценивают изменение микротвердости и с его учетом определяют сдвиги температур хрупко-вязкого перехода.

(SU 1667493, G01N 3/18, опубликовано 20.12.2001)

Недостатком известного способа является то, что определение сдвига температуры хрупко-вязкого перехода ведут с использованием метода определения микротвердости, что не обеспечивает достаточной достоверности прогноза охрупчивания материала корпуса реактора, поскольку при определении микротвердости фиксируют твердость отдельных составляющих стали, а не твердость совокупности всех компонентов стали. Кроме того, известный способ также требует большого количества образцов, что делает его весьма трудоемким.

Задачей и техническим результатом изобретения является снижение трудоемкости и времени определения сдвига критической температуры хрупкости при разработке сталей для корпусов реакторов типа ВВЭР и прогнозировании охрупчивания корпусов реактора, а также повышение достоверности прогноза.

Технического результата достигают тем, что способ определения сдвига критической температуры хрупкости сталей для прогнозирования охрупчивания корпусов реакторов типа ВВЭР включает изготовление образцов, определение их твердости в исходном состоянии и после облучения быстрыми нейтронами, определение сдвига температуры хрупко-вязкого перехода, причем изготавливают образцы стали с переменной концентрацией одного из компонентов по одному из габаритов образца, их макротвердость в точках с одинаковой концентрацией изменяемого компонента определяют методом Бринелля, а сдвиг температуры хрупко-вязкого перехода ΔТк для каждой точки определяют по формуле:

ΔТк=А+В (ΔНВ)2,

где ΔНВ=НВОБ-НВИ,

НВОБ - твердость стали после облучения, МПа,

НВИ - твердость стали в исходном состоянии, МПа,

А - коэффициент, учитывающий суммарное воздействие старения и облучения на температуру охрупчивания, °C. А=100°C,

В - корреляционный коэффициент, °C/(МПа)2. В=0,00012°C/(МПа)2.

Технический результат также достигают тем, что образцы стали изготавливают с переменным составом одного компонента по одному из габаритов образца в пределах марочного состава стали; после изготовления образцы подвергают термообработке, включающей выдержку в течение 4 часов при температуре около 950°C, закалку в воду и последующий отпуск при температуре 640-650°C в течение 8 часов; в качестве компонента образца стали, концентрацию которого изменяют, используют элемент, выбранный из группы: никель, фосфор, молибден, медь, марганец или кремний; концентрацию компонента в образце изменяют непрерывно и/или ступенчато; ускоренное нейтронное облучение производят при температуре 290-320°C за время 9000 ч при плотности потока быстрых нейтронов 1×1016 м-2 с-1 МВт-1 до флюенса 75×1022 м-2.

Изобретение можно проиллюстрировать на примере с использованием стали 15Х2МНФА-А, применяемой для изготовления корпуса реактора типа ВВЭР с содержанием никеля в диапазоне 1,0-1,5 мас. % в пределах марочного состава.

Методом электрошлакового переплава выплавляют слиток стали марки 15Х2МНФА-А, в котором концентрация никеля по высоте слитка непрерывно и/или ступенчато изменяется от 1,0 до 1,5 мас. % в пределах марочного состава.

Из полученного слитка изготавливают плоские образцы из стали переменного состава, по одному из габаритов образца (длине) которых концентрация никеля непрерывно изменяется в исследуемом диапазоне. Использование образцов из сплавов переменного состава, в которых концентрация одного компонента изменяют непрерывно и/или ступенчато, позволяет резко сократить число образцов и повысить точность и достоверность результатов исследования вследствие обеспечения одинакового содержания в металле образца базовых легирующих элементов и примесей.

В качестве компонента образца стали, концентрацию которого изменяют, используют элемент, выбранный из группы: никель, фосфор, молибден, медь, марганец или кремний.

После изготовления образца методом спектрального анализа определяют концентрацию никеля по длине образца и в нескольких фиксированных точках с одинаковой концентрацией никеля в диапазоне от 1,0 до 1,5 мас. % в пределах марочного состава определяют твердость стали методом Бринелля.

Использование метода Бринелля для регистрации макротвердости стали позволяет учесть влияние всех компонентов стали, поскольку в деформируемом индентором (стальным шариком) объеме исследуемой стали оказываются представленными все ее фазы и структурные составляющие.

Полученные образцы переменного состава подвергают термообработке, включающей закалку от температуры около 950°C в воду с выдержкой в течение 4 ч и отпуск при температуре 640-650°C в течение 8 ч.

Затем образцы из стали переменного состава подвергают ускоренному облучению быстрыми нейтронами при температуре 290-320°C в течение времени 9000 ч при плотности потока нейтронов 1×1016 нейтр./м-2 с-1 МВт-1 до флюенса 75×1022 м-2, что соответствует дозе облучения стали на прогнозируемый срок эксплуатации более 60 лет.

После ускоренного облучения повторно определяют твердость стали в фиксированных точках с одинаковой концентрацией изменяемого компонента.

После этого для каждой фиксированной точки определяют сдвиг температуры хрупко-вязкого перехода по формуле:

ΔТк=А+В(ΔНВ)2 ,

где ΔНВ=НВОБ-НВИ,

НВОБ - твердость стали после облучения, МПа,

НВИ - твердость стали в исходном состоянии, МПа,

А - коэффициент, учитывающий суммарное воздействие старения и облучения на температуру охрупчивания, °C. А=100°C;

В - корреляционный коэффициент, °C/(МПа)2. В=0,00012°C/(МПа)2;

Например, для стали 15Х2НМФА с содержанием никеля 1,5 мас. %

НВИ=2150 МПа, НВОБ=2800 МПа,

ΔНВ=2800-2150=650 МПа.

Сдвиг температуры хрупко-вязкого перехода для стали 15Х2МНФА-А с содержанием никеля в пределах марочного состава 1,5 мас. % составил:

ΔТк=100+0,00012×(650)2=100+0,00012×422500=150,70°C.

При оптимизации состава стали для корпусов реактора типа ВВЭР полученное значение сравнивают со значениями ΔТк, полученными для других концентраций никеля, а также со значениями ΔТк, полученными при использовании других элементов в качестве изменяемого компонента.

Кроме того, полученное значение сдвига ΔТк сравнивают с предельно допустимым сдвигом, заданным конструктором. Полученные значения сдвига критической температуры хрупкости способом, описанным в изобретении, не могут являться консервативной оценкой состояния материала корпуса реактора на прогнозируемый срок эксплуатации, но могут быть использованы вместе с другими имеющимися результатами исследований образцов-свидетелей для получения прогнозных зависимостей охрупчивания материала рассматриваемых корпусов реакторов. После этого делается вывод о возможности выбора перспективных сталей для дальнейших более подробных исследований по обычным методикам.

Таким образом, способ по изобретению позволяет осуществить с достаточной степенью достоверности предварительный отбор сталей на образцах переменного состава без изготовления большого количества плавок, дорогостоящих образцов и трудоемких методов испытаний. О величине ресурса в отдаленном периоде можно судить на основании анализа полученных данных по разности показателей твердости сталей между исходным состоянием и показателями после облучения до высоких значений флюенсов быстрых нейтронов на образцах переменного состава и сдвига критической температуры хрупкости ΔTK, вычисленного по формуле.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 90.
20.08.2016
№216.015.4bba

Мартенситная сталь для криогенной техники

Изобретение относится к области металлургии, а именно к высокопрочным мартенситным сталям, применяемым при изготовлении высоконагруженных изделий криогенной техники, например резервуаров и трубопроводов сжиженных газов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002594572
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6f29

Способ электрошлаковой выплавки заготовки корпуса запорной арматуры пара

Изобретение относится к электрометаллургии, в частности к изготовлению электрошлаковым переплавом заготовки корпуса запорной арматуры для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. В способе осуществляют переплав расходуемого электрода...
Тип: Изобретение
Номер охранного документа: 0002597479
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.a0c4

Флюс для электрошлакового переплава

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, для сталелитейного производства и для рафинирования и модифицирования сталей. Флюс АНФ-6-1 дополнительно содержит фторид церия при следующем соотношении компонентов, мас. %: флюс АНФ-6-1 75-80, фторид...
Тип: Изобретение
Номер охранного документа: 0002606691
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.ed88

Электрод для получения сплава переменного состава

Изобретение относится к области металлургии и может быть использовано для получения путем переплава электродов сплавов переменного состава, используемых для исследований их свойств, а также для изготовления изделий, отдельные части которых находятся в различных эксплуатационных условиях....
Тип: Изобретение
Номер охранного документа: 0002628720
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f46d

Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин, работающих при ультрасверхкритических параметрах пара

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с...
Тип: Изобретение
Номер охранного документа: 0002637844
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f6d5

Способ производства стали

Изобретение относится к области металлургии, а именно к производству углеродсодержащих высококачественных сталей, таких как корпусные, роторные, высокопрочные, броневые, подшипниковые, инструментальные, специальные. Способ включает выплавку металла с содержанием углерода более 0,03 мас. %,...
Тип: Изобретение
Номер охранного документа: 0002639080
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.09bb

Способ изготовления трубы многоугольного сечения из низкопластичной стали

Изобретение относится к области изготовления труб многоугольного сечения. Способ включает введение внутрь круглой трубной заготовки клиновых сегментов с рабочими поверхностями, образованными двумя рабочими гранями, расположенными под углом друг к другу, раздачу участка трубной заготовки...
Тип: Изобретение
Номер охранного документа: 0002631997
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.0f54

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, в частности, к сталям для основного оборудования атомных энергетических установок. Теплостойкая радиационно-стойкая сталь содержит, мас. %: углерод 0,10-0,20; кремний 0,02-0,12; марганец 0,02-0,12; хром 1,70-2,10; никель 3,2-5,00; молибден 0,35-0,70;...
Тип: Изобретение
Номер охранного документа: 0002633408
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1512

Способ получения титансодержащих металлических порошков

Изобретение относится получению титансодержащих металлических порошков. Способ включает травление слитков титансодержащего металлического материала, промывку, гидрирование слитков, измельчение полученного гидрида в порошок, дегидрирование полученного порошка гидрида путем термического...
Тип: Изобретение
Номер охранного документа: 0002634866
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1575

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, а именно к теплостойким радиационно-стойким сталям, используемым для изготовления основного оборудования атомных энергетических установок. Сталь содержит, мас.%: углерод 0,10-0,20, кремний 0,02-0,40, марганец 0,02-0,6, хром 2,0-2,5, никель 1,25-2,0,...
Тип: Изобретение
Номер охранного документа: 0002634867
Дата охранного документа: 07.11.2017
Показаны записи 61-70 из 103.
13.01.2017
№217.015.6f29

Способ электрошлаковой выплавки заготовки корпуса запорной арматуры пара

Изобретение относится к электрометаллургии, в частности к изготовлению электрошлаковым переплавом заготовки корпуса запорной арматуры для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. В способе осуществляют переплав расходуемого электрода...
Тип: Изобретение
Номер охранного документа: 0002597479
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.a0c4

Флюс для электрошлакового переплава

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, для сталелитейного производства и для рафинирования и модифицирования сталей. Флюс АНФ-6-1 дополнительно содержит фторид церия при следующем соотношении компонентов, мас. %: флюс АНФ-6-1 75-80, фторид...
Тип: Изобретение
Номер охранного документа: 0002606691
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.ed88

Электрод для получения сплава переменного состава

Изобретение относится к области металлургии и может быть использовано для получения путем переплава электродов сплавов переменного состава, используемых для исследований их свойств, а также для изготовления изделий, отдельные части которых находятся в различных эксплуатационных условиях....
Тип: Изобретение
Номер охранного документа: 0002628720
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f46d

Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин, работающих при ультрасверхкритических параметрах пара

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с...
Тип: Изобретение
Номер охранного документа: 0002637844
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f6d5

Способ производства стали

Изобретение относится к области металлургии, а именно к производству углеродсодержащих высококачественных сталей, таких как корпусные, роторные, высокопрочные, броневые, подшипниковые, инструментальные, специальные. Способ включает выплавку металла с содержанием углерода более 0,03 мас. %,...
Тип: Изобретение
Номер охранного документа: 0002639080
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.09bb

Способ изготовления трубы многоугольного сечения из низкопластичной стали

Изобретение относится к области изготовления труб многоугольного сечения. Способ включает введение внутрь круглой трубной заготовки клиновых сегментов с рабочими поверхностями, образованными двумя рабочими гранями, расположенными под углом друг к другу, раздачу участка трубной заготовки...
Тип: Изобретение
Номер охранного документа: 0002631997
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.0f54

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, в частности, к сталям для основного оборудования атомных энергетических установок. Теплостойкая радиационно-стойкая сталь содержит, мас. %: углерод 0,10-0,20; кремний 0,02-0,12; марганец 0,02-0,12; хром 1,70-2,10; никель 3,2-5,00; молибден 0,35-0,70;...
Тип: Изобретение
Номер охранного документа: 0002633408
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1512

Способ получения титансодержащих металлических порошков

Изобретение относится получению титансодержащих металлических порошков. Способ включает травление слитков титансодержащего металлического материала, промывку, гидрирование слитков, измельчение полученного гидрида в порошок, дегидрирование полученного порошка гидрида путем термического...
Тип: Изобретение
Номер охранного документа: 0002634866
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1575

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, а именно к теплостойким радиационно-стойким сталям, используемым для изготовления основного оборудования атомных энергетических установок. Сталь содержит, мас.%: углерод 0,10-0,20, кремний 0,02-0,40, марганец 0,02-0,6, хром 2,0-2,5, никель 1,25-2,0,...
Тип: Изобретение
Номер охранного документа: 0002634867
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.16f6

Модификатор для получения чугуна с шаровидным графитом

Изобретение относится к литейному производству, в частности к составам модификаторов, используемых в производстве легированных чугунов с шаровидным графитом. Модификатор содержит, мас.%: магний 2,0-9,0; церий 6,0-12,0; железо ≤ 1,5; барий 4,0-10,0; алюминий 2,0-4,0; никель остальное....
Тип: Изобретение
Номер охранного документа: 0002635647
Дата охранного документа: 14.11.2017
+ добавить свой РИД