×
20.01.2018
218.016.16c2

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002635875
Дата охранного документа
16.11.2017
Аннотация: Изобретение относится к области радиолокации и предназначено для формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов в радиолокационных станциях. Техническим результатом является формирование модифицированного ФМ-сигнала, имеющего минимальные энергетические потери на передачу, и прием с сохранением одноканального дискретного фильтра с небольшими потерями. В способе осуществляют формирование, усиление и излучение ФМ-сигналов с последующим приемом, фильтрацией и обработкой, при формировании осуществляют деление ФМ-сигнала на три ФМ-импульса, сдвинутых по времени относительно друг друга, при этом два из них (второй и третий) предназначены для формирования узких импульсов, заполняющих провалы в местах инверсии фазы первого ФМ-импульса, для чего первый ФМ-импульс подают на первый сумматор, являющийся общим для трех ФМ-импульсов, с временем задержки t=τ/8, второй ФМ-импульс с поворотом фазы на -90° и третий ФМ-импульс с временем задержки t=τ/4 и с поворотом фазы на +90° суммируют на втором сумматоре, в результате чего на первом сумматоре возникают несколько коротких импульсов, заполняющих провалы в местах инверсии фазы первого (среднего по времени) ФМ-импульса, а принятый сигнал обрабатывают в оптимальном фильтре. 6 ил.

Изобретение относится к области радиолокации и предназначено для формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов в радиолокационных станциях.

Один из известных способов формирования ФМ-сигналов основан на использовании балансного модулятора (БМ), в котором вся длительность радиосигнала τ разбивается на ряд парциальных радиоимпульсов с длительностью τ0, имеющих определенные фазовые сдвиги 2π/k, где k - номер элемента кода. При k>2 - манипуляция многофазная, а при k=2 - противофазная, т.к. возможны лишь фазовые сдвиги 0 и π. Кодировка чередования фаз часто производится в соответствии с кодом Баркера. Выражение для ФМ-сигнала со скачкообразным изменением фазы записывается следующим образом [1]:

где: n - размер кода или база сигнала (число импульсов последовательности),

k - номер элемента кода,

Pk - элемент кодовой последовательности, принимающий значения +1 или -1 и определяющий код модуляции фазы,

U(t) - огибающая ФМ-сигнала,

- прямоугольная огибающая элементарного импульса длительностью τ0 ФМ-сигнала с длительностью τ.

Так как для формирования ФМ-сигналов используется БМ, то, в соответствии с кодом Баркера, переходные процессы сведены к минимуму при переключении фаз с 0 на π и наоборот. Следует отметить, что при таком способе формирования ФМ-сигналов в точках инверсии фазы несущей нарушается ее непрерывность, приводящая к нежелательному расширению эффективной ширины спектра сигнала [2]. Обычно, в связи с требованиями по электромагнитной совместимости (ЭМС), в передающем устройстве перед излучающим каскадом ставится полосовой фильтр, ограничивающий ширину спектра излучаемого сигнала. Наличие такого фильтра приводит к появлению провалов в области инверсии фазы (фиг. 1), ширина которых пропорциональна ширине полосы фильтра ЭМС. Это приводит к потере энергии излучаемого импульса. Потери возникают и в приемном модуле, где на входе установлен фильтр с более узкой (по сравнению с фильтром ЭМС) оптимальной полосой ΔF=1,37/τ0, где τ0 - длительность парциального импульса ФМ-сигнала. По результатам моделирования энергетические потери могут составлять величину порядка 1,5-2 дБ.

Одним из способов устранения указанных потерь является использование не скачкообразного, а плавного изменения фазы между парциальными импульсами [1]. Плавное изменение фазы на 180° достигается за счет изменения центральной частоты f0 на величину F в малом интервале Δτ=ξτ (ξ<1), охватывающем область инверсии фазы. Выражение для комплексной огибающей ФМ-сигнала с плавным изменением фазы между импульсами можно представить следующим образом:

где: Ω=2πF, причем ΩΔτ=2πFτ0ξ=π;

- параметр, характеризующий наличие плавного изменения фазы между парциальными импульсами.

С учетом изложенного этот способ формирования модифицированных ФМ-сигналов выберем в качестве прототипа. Недостатком прототипа, как показал его анализ в работе [1], является увеличение ширины главного лепестка и максимальных уровней первой пары боковых лепестков спектральной плотности сигнала. Кроме того, наблюдаются потери в отношении сигнал/шум, пропорциональные длительности Δτ области с плавным изменением фазы. Данные потери связаны с нарушением оптимальности при приеме модифицированного ФМ-сигнала с плавным изменением фазы. В приемном устройстве для уменьшения потерь, возникающих при дискретизации сигналов в аналого-цифровом преобразователе (АЦП), вызванных разным временным положением аналогового сигнала относительно моментов дискретизации, требуется набор дискретных фильтров, расставленных с некоторым временным шагом Δt, что приводит к увеличению аппаратурных затрат.

Переход к одноканальной схеме наряду с экономией вычислительных ресурсов влечет за собой потери в обнаружении информационного канала на фоне шума.

Выход из этого положения был найден [3] с помощью применения аналого-дискретного фильтра (АДФ) с передаточной характеристикой, определяемой формулой:

где: ω - частота;

Δt - шаг временной дискретизации;

S(ω) - комплексно-сопряженный спектр полезного сигнала;

N(ω) - спектральная плотность мощности шума.

Применение АДФ расширяет импульс сигнала до дискретизации, при этом отношение сигнал/шум уменьшается на некоторую величину. Как показало моделирование, при сжатии модифицированного ФМ-сигнала, применяемого в предлагаемом способе формирования и обработки радиолокационных модифицированных ФМ-сигналов, импульс получается более широкий, чем при сжатии ФМ-сигнала, например с плавным изменением фазы. Поэтому в предлагаемом способе не требуется использовать дополнительный аналоговый фильтр с характеристикой, описываемой формулой (3).

Техническим результатом предлагаемого изобретения является формирование модифицированного ФМ-сигнала, имеющего минимальные энергетические потери на передачу, и прием с сохранением одноканального дискретного фильтра с небольшими потерями.

Указанный технический результат достигается тем, что в известный способ, заключающийся в формировании, усилении и излучении ФМ-сигналов, последующем их приеме, фильтрации и обработке, введено при формировании деление ФМ-сигнала на три ФМ-импульса, сдвинутых по времени относительно друг друга, при этом два из них (второй и третий) предназначены для формирования узких импульсов, заполняющих провалы в местах инверсии фазы первого ФМ-импульса, для чего первый ФМ-импульс подают на первый сумматор, являющийся общим для трех ФМ-импульсов, с временем задержки t=τ/8, второй ФМ-импульс с поворотом фазы на -90° и третий ФМ-импульс с временем задержки t=τ/4 и с поворотом фазы на +90° суммируют на втором сумматоре, в результате чего на первом сумматоре возникают несколько коротких импульсов, заполняющих провалы в местах инверсии фазы первого (среднего по времени) ФМ-импульса, а принятый сигнал обрабатывают в оптимальном фильтре.

Для лучшего понимания предлагаемого способа формирования и обработки радиолокационных модифицированных ФМ-сигналов рассмотрим блок-схему его реализации, показанную на фиг. 2, где приняты следующие обозначения:

1 - передающий модуль;

2 - приемный модуль;

3 - балансный модулятор (БМ);

4 - фильтр ЭМС (Фэмс);

5 - формирователь модифицированного ФМ-сигнала;

6 - линия задержки на τ/8;

7 - первый сумматор;

8 - выходной каскад;

9 - делитель;

10 - фазовращатель на -90°;

11 - второй сумматор;

12 - линия задержки на τ/4;

13 - фазовращатель на +90°;

14 - фильтр (Ф0);

15 - оптимальный фильтр;

16 - линия задержки на τ/8;

17 - первый сумматор;

18 - сжимающий фильтр (СФ);

19 - аналого-цифровой преобразователь (АЦП);

20 - делитель;

21 - фазовращатель на -90°;

22 - второй сумматор;

23 - линия задержки на τ/4;

24 - фазовращатель на +90°;

25 - блок цифровой обработки.

Как видно из фиг. 2, в состав устройства входят передающий 1 и приемный 2 модули. Передающий модуль 1 состоит из последовательно соединенных БМ 3, Фэмс 4, формирователя 5 модифицированного ФМ-сигнала и выходного каскада 8 передающего модуля 1, выходом соединенного с антенной. Причем формирователь 5 модифицированного ФМ-сигнала состоит из делителя 9, вход которого подключен к выходу Фэмс 4, а первый выход - ко входу линии задержки 6 на τ/8, выход которой соединен с первым входом первого сумматора 7, выход которого соединен со входом выходного каскада 8 передающего модуля 1. Второй выход делителя 9 через фазовращатель 10 на -90° подключен к первому входу второго сумматора 11, выход которого соединен со вторым входом первого сумматора 7. Третий выход делителя 9 через последовательно соединенные линию задержки 12 на τ/4 и фазовращатель 13 на +90° подключен ко второму входу второго сумматора 11.

Приемный модуль 2 состоит из последовательно соединенных Ф0 14 с оптимальной полосой F=1,37/τ0, оптимального фильтра 15, СФ 18, АЦП 19 и блока цифровой обработки 25, причем вход Ф0 14 подключен к антенне. Оптимальный фильтр 15 содержит делитель 20, входом подключенный ко выходу Ф0 14, а первым выходом через линию задержки 16 на τ/8 - к первому входу первого сумматора 17 и далее - ко входу СФ 18. Второй выход делителя 20 через фазовращатель 21 на -90° соединен с первым входом второго сумматора 22, выходом подключенного ко второму входу первого сумматора 17. Третий выход делителя 20 соединен последовательно с линией задержки 23 на τ/4, фазовращателем 24 на +90°, вторым входом второго сумматора 22.

Принцип работы устройства, реализующего предлагаемый способ, следующий.

ФМ-сигнал длительностью τ, вышедший из БМ 3 передающего модуля 1, подается через Фэмс 4 на вход делителя 9 формирователя 5 модифицированного ФМ-сигнала, где делится на три элементарных импульса τ0. Первый импульс с первого выхода делителя 9 через линию задержки 6 с временем задержки t=τ/8 подается на первый вход первого сумматора 7. Второй импульс со второго выхода делителя 9 с поворотом фазы в фазовращателе 10 на -90° поступает на первый вход второго сумматора 11. Третий импульс с третьего выхода делителя 9 через последовательно соединенные линию задержки 12 на τ/4 и фазовращатель 13 на +90° подается на второй вход второго сумматора 11.

В результате сложения второго импульса с третьим импульсом во втором сумматоре 11 возникает несколько узких импульсов, длительность которых пропорциональна ширине провалов, расположенных в местах инверсии фазы первого ФМ-импульса, показанных на фиг. 3. При подаче их на первый сумматор 7 они заполняют провалы в первом ФМ-импульсе и его общий вид становится таким, как показано на фиг. 4. С выхода первого сумматора 7 сформированный ФМ-сигнал поступает на выходной каскад 8 передающего модуля 1, где усиливается по мощности, и далее - через антенну излучается в пространство.

Принятый от антенны сигнал поступает на фильтр Ф0 14 приемного модуля 2 и далее - в оптимальный фильтр 15, согласованный с модифицированным ФМ-сигналом, по строению похожий на формирователь 5 модифицированного ФМ-сигнала, комплексно сопряженный с ним. Комплексное сопряжение обеспечивается отрицательным знаком сигнала, приходящего с выхода второго сумматора 22 на второй вход первого сумматора 17. С выхода первого сумматора 17 сигнал поступает на вход СФ 18, и далее через АЦП 19 - на вход блока цифровой обработки 25. Вид сигнала на выходе СФ 18 показан на фиг. 5.

На фиг. 6 показан сжатый ФМ-сигнал, не прошедший через оптимальный фильтр, согласованный с модифицированным ФМ-сигналом. Из их сравнения видно, что сигнал прошедший через оптимальный фильтр, более широкий, а, следовательно, имеет меньшие потери при дискретизации.

Анализ предлагаемого способа формирования и обработки радиолокационных модифицированных ФМ-сигналов показал его достоинства относительно прототипа. Благодаря отсутствию провалов отсутствуют энергетические потери, а благодаря наличию оптимального фильтра, согласованного с модифицированным ФМ-сигналом, отсутствуют потери, связанные с модификацией ФМ-импульса, в отличие от прототипа, где величина потерь связана с длительностью участка ФМ-импульса, на котором происходит плавное изменение фазы и отсутствует оптимальный фильтр при приеме такого модифицированного ФМ-сигнала. При дискретной обработке ФМ-сигнала в предлагаемом способе потери получаются минимальными поскольку сжатый ФМ-сигнал более широкий относительно ФМ-сигнала с плавным изменением фазы, поэтому при использовании способа-прототипа необходимо ставить фильтр для его расширения, чтобы избежать потерь.

Источники информации

1. Г.С. Нахмансон, А.В. Суслин «Корреляционные и спектральные характеристики радиолокационного фазоманипулированного сигнала с плавным изменением фазы», «Успехи современной радиоэлектроники» №4, 2012 г., стр. 7-11;

2. Ч. Кук, М. Бернфельд «Радиолокационные сигналы», «Советское радио», Москва, - 1971 г., стр. 262;

3. Патент РФ №2291463 «Способ аналого-дискретной обработки радиолокационных импульсных сигналов», опубликовано 10.01.2007, автор П.В. Михеев.

Способ формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов, заключающийся в формировании, усилении и излучении ФМ-сигналов, последующем их приеме, фильтрации и обработке, отличающийся тем, что при формировании ФМ-сигнал делят на три ФМ-импульса, сдвинутых по времени относительно друг друга, при этом второй и третий ФМ-импульсы предназначены для формирования узких импульсов, заполняющих провалы в местах инверсии фазы первого ФМ-импульса, для чего первый ФМ-импульс подают на первый сумматор, являющийся общим для трех ФМ-импульсов, с временем задержки t=τ/8, а второй ФМ-импульс с поворотом фазы на -90° и третий ФМ-импульс с временем задержки t=τ/4 и с поворотом фазы на +90° суммируют, в результате чего на первом сумматоре возникают несколько коротких импульсов, заполняющих провалы в местах инверсии фазы первого ФМ-импульса, причем принятый сигнал обрабатывают в оптимальном фильтре.
СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ
СПОСОБ ФОРМИРОВАНИЯ И ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ МОДИФИЦИРОВАННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 41-44 из 44.
17.01.2020
№220.017.f66e

Способ защиты информации от утечки по каналу побочных электромагнитных излучений и наводок и устройство защиты информации для реализации этого способа

Изобретение относится к технике связи и может использоваться для защиты информации, обрабатываемой техническим средством (ТС), имеющим в своем составе видеосистему (ВС), функционирующую на основе стандартов DVI, VGA, Display Port, HDMI и аналогичных, от утечки информации по каналу побочных...
Тип: Изобретение
Номер охранного документа: 0002711018
Дата охранного документа: 14.01.2020
20.02.2020
№220.018.03fd

Наземный радиолокационный обнаружитель

Изобретение относится к области радиолокации и может быть использовано для обнаружения, измерения координат, сопровождения и распознавания на малой и средней дальности (до 100 км) средств поражения, а также широкого класса воздушных объектов. Техническим результатом предлагаемого изобретения...
Тип: Изобретение
Номер охранного документа: 0002714450
Дата охранного документа: 17.02.2020
25.04.2020
№220.018.19cc

Способ изготовления пластинчатого щелевого теплообменника

Изобретение относится к области теплообмена между газовыми потоками. Способ изготовления пластинчатого щелевого теплообменника включает сборку из пластин щелевых каналов, герметизацию которых производят путем сварки образующих щелевой канал пластин попарно между собой, сборку щелевых каналов в...
Тип: Изобретение
Номер охранного документа: 0002719776
Дата охранного документа: 23.04.2020
12.04.2023
№223.018.45d5

Обзорная наземно-космическая рлс

Изобретение относится к области радиолокации, и в частности к контролю околоземного космического пространства с помощью радиолокационных средств. Техническим результатом изобретения является снижение требований к мощности передающего устройства. Обзорная наземно-космическая радиолокационная...
Тип: Изобретение
Номер охранного документа: 0002742392
Дата охранного документа: 05.02.2021
Показаны записи 21-25 из 25.
20.01.2018
№218.016.0fbf

Способ и устройство автоматизированной проверки работоспособности и диагностики неисправностей радиоэлектронной аппаратуры

Изобретение относится к области технической диагностики, в частности к способам и устройствам контроля работоспособности и диагностики неисправностей радиоэлектронной аппаратуры (РЭА) цифровых, аналоговых, цифроаналоговых электронных модулей РЭА, в частности радиолокационной станции (РЛС)....
Тип: Изобретение
Номер охранного документа: 0002633530
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.1038

Антенное переключающее устройство (апу)

Антенное переключающее устройство (АПУ) относится к антенной технике и может быть использовано в приемопередающих модулях (ППМ) активных фазированных антенных решеток. Устройство содержит передающий, приемный и приемопередающий участки линии передачи, Т-образное разветвление с четвертьволновым...
Тип: Изобретение
Номер охранного документа: 0002633654
Дата охранного документа: 16.10.2017
17.02.2018
№218.016.2bbb

Способ улучшения характеристик нелинейного радиолокатора

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ). Техническим результатом предлагаемого изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002643199
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.31ac

Способ сетевой обработки информации в автоматизированной системе обработки и обмена радиолокационной информацией

Изобретение относится к радиолокации и может быть использовано в автоматизированных системах управления, построенных на принципах сетевой информационной структуры, в части, касающейся передачи и обмена радиолокационной информацией (РЛИ), в автоматизированной системе обработки и обмена...
Тип: Изобретение
Номер охранного документа: 0002645154
Дата охранного документа: 16.02.2018
11.03.2019
№219.016.d9f3

Способ обработки сигналов на фоне сильных импульсных помех в приемном канале импульсно-доплеровских радиолокационных станций

Изобретение может быть использовано в обзорных импульсно-доплеровских радиолокационных станциях (РЛС) для обнаружения эхо-сигналов от движущихся целей на фоне сильных несинхронных импульсных помех. Достигаемым техническим результатом изобретения является повышение эффективности обработки в...
Тип: Изобретение
Номер охранного документа: 0002334247
Дата охранного документа: 20.09.2008
+ добавить свой РИД