×
20.01.2018
218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве алюминийсодержащего прекурсора используется водно-спиртовой раствор Al(NO)⋅9HO. Порошок пропитывается прекурсором, сушится при температуре 30–70°С и затем прокаливается при температуре 250–280°С. Изобретение позволяет упростить технологию изготовления и повысить функциональные характеристики пористого газодиффузионного анода. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом.

Современная конструкция топливного элемента с расплавленным карбонатным электролитом (РКТЭ) предполагает планарную геометрию, в которой пластины пористых газодиффузионных анода и катода разделены пластиной матричного электролита, представляющего собой пористую керамическую матрицу, пропитанную жидким электролитом, которым является расплав карбонатов металлов. Причем поры матричного электролита должны быть полностью заполнены жидким электролитом, а поры анода и катода должны быть заполнены жидким электролитом только частично. Для эффективной и долговременной работы РКТЭ важно обеспечить равномерное распределение электролита между анодом и катодом, а также долговременную стабильность пористой структуры анода, катода и матричного электролита. Основу материала анода составляет металлический никель, смачиваемость электролитом которого значительно ниже, чем смачиваемость материала катода, что приводит к неравному распределению электролита между анодом и катодом. Для повышения смачиваемости и стабилизации пористой структуры анода используются сплавы никеля с алюминием или хромом. Стоимость приготовления мелкодисперсных порошков из таких сплавов значительно выше по сравнению с традиционной карбонильной технологией приготовления порошков из чистого никеля. Кроме того, в случае сплавов никеля с алюминием, область существования сплава ограничена 5 мол.% алюминия, что может быть недостаточно для обеспечения хорошей смачиваемости электролитом и стабилизации пористой структуры. Для преодоления указанных недостатков предложены технические решения, в которых для повышения смачиваемости и устойчивости пористой структуры анода в материал анода вводятся керамические добавки, такие как Al2O3, LiAlO2, CeO2 и ряд других.

В общем случае процесс приготовления пористого газодиффузионного анода включает следующие стадии: (1) подготовка никелевого прекурсора; (2) приготовление шликера; (3) изготовление сырой анодной пластины методом шликерного литья; (4) выжигание связки ex-situ и при необходимости дополнительная обработка отожженной пластины. Последняя стадия не всегда обязательна, поскольку выжигание связки может быть проведено непосредственно в топливном элементе в процессе технологического запуска. Известны технологические решения предполагающие введение стабилизирующей керамической добавки на одной любой из перечисленных стадий.

Известен способ изготовления анода РКТЭ [патент US 6585931 B1, МПК H01M8/14, опубл. 01.07.2003], в котором в качестве исходного никельсодержащего материала используется смесь порошка металлического никеля с порошком оксида алюминия, на поверхность которого никель нанесен методом осаждения из раствора. Данный способ позволяет повысить устойчивость анода по отношению к пластической деформации.

Однако данный способ не обеспечивает необходимого повышения смачиваемости поверхности анода электролитом. Другим недостатком способа является неоходимость проведения двух высокотемпературных отжигов при 400°С и 800°С в восстановительной атмосфере, что усложняет способ изготовления анода и повышает его стоимость.

Известен способ изготовления анода РКТЭ [патент US 6824913 B2, МПК H01M8/14, опубл. 30.11.2004], в котором в качестве исходного анодного материала используется металлический никель или металлические никельсодержащие сплавы и смеси, а керамическая добавка вводится не путем обработки исходного металлического порошка, а путем обработки уже сформированной пористой пластины анода. Пластина пропитывается золем, содержащим керамическую добавку, и затем высушивается на воздухе при 100°С. Процедура пропитки и сушки повторяется несколько раз до получения необходимой плотности керамического покрытия. Данный способ позволяет повысить как устойчивость анода по отношению к пластической деформации, так и смачиваемость электролитом.

Недостатком данного способа является необходимость дополнительных манипуляций со сформированной анодной пластиной, которые повышают риск повреждения пластины и увеличивают трудоемкость способа. Данный способ также включает отжиг при высокой температуре в восстановительной атмосфере, что усложняет процедуру изготовления анода и повышает его стоимость.

Известен способ изготовления анода РКТЭ [патент US 8163437 B2, МПК H01M8/14, опубл. 24.04.2012], в котором порошки никелевого сплава и керамической добавки смешиваются в процессе приготовления шликера. После отливки шликера и сушки получившаяся анодная пластина ламинируется на никелевую сетку. Данный способ позволяет повысить как устойчивость анода по отношению к пластической деформации, так и смачиваемость электролитом и при этом не требует предварительного высокотемпературного отжига анодной пластины.

Указанный способ предполагает содержание керамики в анодной пластине от 5 до 50 об.%. Такое высокое содержание керамической добавки значительно снижает площадь активной поверхности электрода и повышает омические потери в нем, что приводит к снижению эффективности топливного элемента в целом.

Наиболее близким к заявляемому изобретению является техническое решение [Lee H., Lee I., Lee D., Lim H. Novel application of aluminum salt for cost-effective fabrication of a highly creep-resistant nickel-aluminum anode for a molten carbonate fuel cell // J. Power Sources. 2006. V. 162. No. 2. P. 1088.], которое выбрано за прототип. В данном способе в качестве исходного анодного материала используется порошок никеля карбонильного, а в качестве керамической добавки используется оксид Al2O3, который вводится в виде порошка алюминийсодержащего прекурсора Al(OH)(CH3COO)2 на стадии приготовления шликера. Данный способ позволяет повысить устойчивость анода по отношению к пластической деформации и повысить смачиваемость электролитом.

Недостатком данного способа является необходимость проведения высокотемпературного отжига 1000–1100°С сформированной пластины анода в восстановительной атмосфере, что усложняет технологию и повышает ее стоимость.

Заявляемое изобретение решает задачу упрощения технологии и повышает функциональные характеристики изготавливаемого анода за счет технического результата, заключающегося в более равномерном распределении керамической добавки и формировании дополнительной ультрамелкодисперсной фракции никеля. Сформированная методом шликерного литья сырая пластина анода не требует высокотемпературного отжига ex-situ в восстановительной атмосфере.

Технический результат достигается тем, что для обработки исходного никелевого порошка в качестве алюминийсодержащего прекурсора используется водно-спиртовой раствор Al(NO3)3⋅9H2O. В известных технических решениях керамический прекурсор имеет форму суспензии, а не раствора, что требует дополнительных мер для равномерного распределения прекурсора по материалу анода, тогда как в предлагаемом техническом решении, для обеспечения равномерного распределения керамической добавки, достаточно пропитать исходный никельсодержащий порошок раствором прекурсора требуемой концентрации. В отличие от известных технических решений, предлагаемая форма растворенного прекурсора не является химически инертной по отношению к никелю, причем протекающее химическое взаимодействие дает два дополнительных технических результата. Во-первых, формирование зародышей кристаллов керамической фазы Al2O3 происходит на поверхности никеля, что обеспечивает лучшую адгезию по сравнению с механическим смешиванием твердых фаз; во-вторых, происходит частичное окисление металлического никеля до NiO, который при последующем восстановлении в процессе технологического запуска топливного элемента образует дополнительную мелкодисперсную фракцию металлического никеля, дающую дополнительное повышение смачиваемости и электрохимической активности анода.

Протекающее химическое взаимодействие имеет комплексную природу. Одновременно протекают процессы гидролиза нитрата алюминия, зародышеобразование и рост фазы Al2O3, восстановление нитрат-иона, окисление этилового спирта, частичное окисление никеля. Суммарный процесс является экзотермическим, поэтому важно подобрать соотношение воды, этилового спирта и Al(NO3)3⋅9H2O таким образом, чтобы, с одной стороны, процесс протекал с практически достаточной скоростью, с другой стороны, чтобы не происходил спонтанный перегрев реакционной смеси.

После обработки никелевого порошка водно-спиртовым раствором Al(NO3)3⋅9H2O образовавшийся композитный порошок высушивается при температуре 30–70°С, затем прокаливается при температуре 250–280°С для удаления остатков нитратов. Полученный никельсодержащий композитный порошок может быть использован для приготовления шликера и изготовления сырой анодной пластины по технологии шликерного литья или каландрования.

Приведенные ниже примеры подтверждают, но не исчерпывают предлагаемое изобретение.

Пример 1

Согласно заявляемому техническому решению для изготовления анодного материала порошок карбонильного никеля предварительно обрабатывается алюминийсодержащим прекурсором. Для этого готовится водно-спиртовая смесь – к 60 мл воды добавляется 50 мл этилового спирта и перемешивается. К полученной смеси добавляется 4.18 г Al(NO3)3⋅9H2O и перемешивается до полного растворения. Порошок карбонильного никеля со средним размером частиц 2.5 мкм просеивается через сито с размером ячейки 20 мкм для отделения возможных примесей агломерированных частиц. Берется навеска просеянного порошка 99 г, помещается в кювету и заливается приготовленным водно-спиртовым раствором Al(NO3)3⋅9H2O. Смесь выдерживается в течение часа до завершения протекания реакций, затем сушится при 40°С в течение 4 часов, затем прокаливается в атмосфере воздуха при 260°С в течение 8 часов. После охлаждения прокаленная смесь диспергируется и просеивается через сито с размером ячейки 20 мкм. Изготовленный таким образом анодный материал далее используется для изготовления пористого газодиффузионного анода по известной технологии шликерного литья. На фигурах 1 и 2 представлены микрофотографии исходного и обработанного карбонильного никеля соответственно. На фигуре 2 видно, что исходный порошок никеля покрывается продуктами реакции равномерно. Содержание добавки Al2O3в обработанном порошке составляет 0.57 вес.%.

Для приготовления шликера 100 г подготовленного анодного материала смешиваются с органической композицией, содержащей 14 мл циклогексанона, 17 мл изобутанола, 10 г поливинилбутираля, 6 мл дибутилфталата и 1.5 мл дисперсанта DISPERBYK-104S. Получившаяся шликерная смесь гомогенизируется в планетарной мельнице в течение 40 часов, после чего используется для изготовления сырой анодной пластины методом шликерного литья.

Сырая анодная пластина, полученная на предыдущем этапе по заявляемой технологии, не требует дополнительной обработки ex-situ и может быть использована для сборки стека топливного элемента с выжиганием органической связки непосредственно в процессе технологического запуск. На фигуре 3 представлены результаты испытаний лабораторного макета карбонатного топливного элемента с анодами, приготовленными из необработанного порошка карбонильного никеля и порошка, содержащего 0.57 вес.% Al2O3. Показано, что введение керамической добавки приводит, во-первых, к повышению максимальной плотности тока с 198 до 305 мА/см2 при напряжении на единичном элементе 0.7 В; во-вторых, расширяется доступная область оптимальных степеней заполнения электролитом и, в-третьих, оптимальная область смещается в сторону больших степеней заполнения электролитом. Все три результата являются выигрышными для эффективной и долговременной работы топливного элемента.

Пример 2

Готовится 110 мл водно-спиртовой смеси с концентрацией этилового спирта 40 об.%. К полученной смеси добавляется 2.0 г Al(NO3)3⋅9H2O и перемешивается до полного растворения. Порошок никель-хромового сплава Х20Н80 просеивается через сито с размером ячейки 20 мкм. Берется навеска просеянного порошка 99.5 г, помещается в кювету и заливается приготовленным водно-спиртовым раствором Al(NO3)3⋅9H2O. Смесь выдерживается в течение часа до завершения протекания реакций, затем сушится при 70°С в течение 4 часов, затем прокаливается в атмосфере воздуха при 250°С в течение 8 часов. После охлаждения прокаленная смесь диспергируется и просеивается через сито с размером ячейки 20 мкм. Содержание добавки Al2O3 в обработанном порошке составляет 0.27 вес.%. Изготовленный таким образом анодный материал далее используется для изготовления пористого газодиффузионного анода по технологии шликерного литья, приведенной в примере 1. Введение керамической добавки приводит, во-первых, к повышению максимальной плотности тока с 198 до 265 мА/см2 при напряжении на единичном элементе 0.7 В; во-вторых, расширяется доступная область оптимальных степеней заполнения электролитом и, в-третьих, оптимальная область смещается в сторону больших степеней заполнения электролитом (Фиг. 3).

Пример 3

Готовится 110 мл водно-спиртовой смеси с концентрацией этилового спирта 50 об.%. К полученной смеси добавляется 12.5 г Al(NO3)3⋅9H2O и перемешивается до полного растворения. Порошок карбонильного никеля ПНК-1 просеивается через сито с размером ячейки 20 мкм. Берется навеска просеянного порошка 97 г, помещается в кювету и заливается приготовленным водно-спиртовым раствором Al(NO3)3⋅9H2O. Смесь выдерживается в течение часа до завершения протекания реакций, затем сушится при 30°С в течение 8 часов, затем прокаливается в атмосфере воздуха при 280°С в течение 8 часов. После охлаждения прокаленная смесь диспергируется и просеивается через сито с размером ячейки 20 мкм. Содержание добавки Al2O3 в обработанном порошке составляет 1.73 вес.%. Изготовленный таким образом анодный материал далее используется для изготовления пористого газодиффузионного анода по технологии шликерного литья, приведенной в примере 1. Введение керамической добавки приводит, во-первых, к повышению максимальной плотности тока с 198 до 282 мА/см2 при напряжении на единичном элементе 0.7 В; во-вторых, расширяется доступная область оптимальных степеней заполнения электролитом и, в-третьих, оптимальная область смещается в сторону больших степеней заполнения электролитом (Фиг. 3).

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом, включающий обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором, отличающийся тем, что порошок металлического никеля или никельсодержащего сплава обрабатывают водно-спиртовым раствором нитрата алюминия с концентрацией этилового спирта 40–50 об.%, а порошок, полученный после обработки прекурсором, сушат при температуре 30–70°С, а затем прокаливают в атмосфере воздуха при температуре 250–280°С.
Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом
Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом
Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом
Источник поступления информации: Роспатент

Показаны записи 51-60 из 95.
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
Показаны записи 51-56 из 56.
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
+ добавить свой РИД