×
20.01.2018
218.016.1310

Результат интеллектуальной деятельности: Цифровой обнаружитель фазоманипулированных сигналов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и может быть использовано в устройствах обнаружения занятости и контроля канала связи с фазоманипулированными (ФМ) сигналами в многоканальных системах радиосвязи, при управлении радиоприемником и цифровыми модемами с ФМ сигналами, а также радиоразведки систем радиосвязи с ФМ сигналами. Технический результат заключается в повышении помехоустойчивости и упрощении аппаратной реализации цифрового обнаружителя ФМ сигналов за счет увеличения уровня сигнала по отношению к уровню шума на выходе устройства и оценки уровня шума для формировании порога принятия решения о наличии сигнала. Цифровой обнаружитель содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов, каждый из которых содержит последовательно соединенные блоки обработки отсчетов, каждый из этих блоков состоит из регистра сдвига многоразрядных кодов и сумматора, входной узкополосный фильтр, умножитель частоты, первый и второй вычитатели, первый и второй квадратичные преобразователи, решающее устройство. 4 ил.

Изобретение относится к области радиотехники и может быть использовано в устройствах:

- обнаружения занятости канала связи с фазоманипулированными (ФМ) сигналами в многоканальных системах радиосвязи;

- управления радиоприемником ФМ сигналов;

- контроля качества ФМ канала связи;

- радиоразведки систем радиосвязи с ФМ сигналами;

- управления цифровыми модемами с ФМ в проводных и радиоканалах.

Известно [1] устройство выделения узкополосных сигналов (см. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. «Цифровая обработка сигналов». М.: Радио и связь, 1985, стр. 53). Устройство содержит К-1 каскадно соединенных элементов задержки на интервал квантования отсчетов входного сигнала, где К - количество отсчетов, и многовходовый сумматор отсчетов. Недостатком данного устройства является сложность аппаратной реализации при больших К и низкая скорость обработки сигнала при последовательном во времени сложении отсчетов в накапливающем сумматоре.

Известно [2] устройство для обнаружения фазоманипулированных сигналов (см. патент РФ №2527761, опубл. 10.09.2014 Бюл. №3, авторы Литвиненко В.П., Литвиненко Ю.В.). Оно содержит входной полосовой фильтр, умножитель частоты, узкополосный фильтр сигнала, детектор сигнала, узкополосный фильтр помехи, детектор помехи и решающее устройство. Недостатком устройства является аналоговая обработка сигнала, приводящая к сложности при цифровой реализации.

Наиболее близким по технической сущности и внутренней структуре к предлагаемому устройству является [3] цифровой обнаружитель узкополосных сигналов (патент РФ №2257671 C1, Н04В 1/10, 27.07.2005, Бюл. №21, авторы Глушков А.Н., Литвиненко В.П., Проскуряков Ю.Д.).

Его недостатком является невысокая помехоустойчивость обнаружения ФМ сигналов, так как не используется возможность устранения фазовой манипуляции при умножении частоты.

Задачей предлагаемого технического решения является повышение помехоустойчивости обнаружителя ФМ сигналов.

Поставленная задача решается тем, что цифровой обнаружитель фазоманипулированных сигналов, содержащий аналого-цифровой преобразователь (АЦП), регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки (ККО) сигналов, каждый из которых содержит последовательно соединенные блоки обработки отсчетов (БОО), при этом количество (n) БОО определяется двоичным логарифмом числа N обрабатываемых периодов сигнала, n=log2N, а каждый из этих блоков состоит из регистра сдвига многоразрядных кодов и сумматора, дополнительно содержит узкополосный фильтр (Ф), вход которого является входом цифрового обнаружителя ФМ сигналов, подключенный к умножителю частоты (УЧ), выход которого подключен к входу АЦП, выход которого соединен с входом регистра сдвига многоразрядных кодов на четыре отсчета, первый вычитатель, входы которого подключены к четным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО первого ККО, второй вычитатель, входы которого подключены к нечетным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО второго ККО, третий и четвертый вычитатели, входы которых подключены к выходам многоразрядных регистров сдвига последних (с номером n) БОО первого и второго ККО соответственно, первый квадратичный преобразователь, входы которого соединены с выходами сумматоров последних БОО первого и второго ККО соответственно, второй квадратичный преобразователь, входы которого соединены с выходами третьего и четвертого вычитателей, и решающее устройство, входы которого соединены с выходами первого и второго квадратичных преобразователей, в выход является выходом обнаружителя.

Предлагаемое техническое решение поясняется чертежами.

На фиг. 1 представлена структурная схема предлагаемого устройства, на фиг. 2 - нормированная частотная характеристика устройства с выхода первого КП (сплошная линия) и частотная характеристика устройства с выхода второго КП (пунктирная линия), где ƒ1 - центральная частота сигнала с выхода умножителя частоты, частота квантования АЦП равна 4ƒ1. На фиг. 3а показана частотная характеристика узкополосного фильтра ФМ сигнала, выходной сигнал фильтра приведен на фиг. 3б, а его спектр - на фиг. 3в. На фиг. 4а представлена зависимость от времени нормированного отклика y(t) канала оценки уровня сигнала, а на фиг. 4б - временная зависимость нормированного отклика z(t) канала оценки уровня шума.

Устройство содержит (см. фиг. 1) узкополосный фильтр (Ф) 1, на вход которого подается ФМ сигнал 2, а выход соединен с входом умножителя частоты (УЧ) 3, подключенного к АЦП 4, на управляющий вход 5 которого подаются импульсы квантования 5. Выход АЦП 4 соединен с входом регистра 6 сдвига многоразрядных кодов на четыре отсчета, четные выходы которого соединены с соответствующими входами первого вычитателя 7, выход которого соединен с входом первого ККО 9, а нечетные выходы - с соответствующими входами второго вычитателя 8, выход которого соединен с входом второго ККО 10. Каждый ККО содержит n каскадно соединенных БОО. Количество БОО зависит от числа N обрабатываемых периодов сигнала и определяется двоичным логарифмом N. Такое построение устройства обеспечивает минимальное количество БОО, при этом число обрабатываемых периодов сигнала равно N=2'' Первый ККО 9 содержит последовательно соединенные блоки 11-1, 11-2, … ,11-n обработки отсчетов, а второй ККО 10 - последовательно соединенные блоки 12-1, 12-2, …, 12-n обработки отсчетов. Каждый из БОО состоит из регистра сдвига многоразрядных кодов и сумматора. Блоки 1-1, 11-2, …, 11-n обработки отсчетов содержат регистры 13-1, 13-2, …, 13-n сдвига многоразрядных кодов и сумматоры 14-1, 14-2, …, 14-n соответственно, а блоки 12-1, 12-2, …, 12-n обработки отсчетов - соответственно регистры 15-1, 15-2, …, 15-n сдвига многоразрядных кодов и сумматоры 16-1, 16-2, …, 16-n. В каждом блоке 11 (12) обработки отсчетов первый вход сумматора 14 (16) соединен с входом регистра 13 (15) сдвига и является входом блока 11 (12) обработки отсчетов. Второй вход сумматора 14 (16) соединен с выходом регистра 13 (15) сдвига. Выход сумматора 14 (16) является выходом блока 11 (12) обработки отсчетов, а тактовый вход регистра 13 (15) сдвига является управляющим входом блока 11 (12) обработки отсчетов. Выход первого вычитателя 7 соединен с входом блока 11-1 обработки отсчетов ККО 9, а выход блока 11-n обработки отсчетов ККО 9 - с первым входом первого квадратичного преобразователя 19. Выход второго вычитателя 8 соединен с входом блока 12-1 обработки отсчетов второго ККО 10, а выход блока 12-n обработки отсчетов ККО 10 - с вторым входом первого квадратичного преобразователя 19. Первый и второй выходы регистра 13-n сдвига многоразрядных кодов БОО 11-n ККО 9 соединены с первым и вторым входами третьего вычитателя 17, выход которого подключен к первому входу второго квадратичного преобразователя 20, а первый и второй выходы регистра 15-n сдвига многоразрядных кодов БОО 12-n ККО 10 соединены с первым и вторым входами четвертого вычитателя 18, выход которого подключен к второму входу второго квадратичного преобразователя 20. Выход первого квадратичного преобразователя 19 подключен к первому (сигнальному) входу решающего устройства 21, на второй (пороговый) вход которого подается оценка шума с выхода второго квадратичного преобразователя 20, выход решающего устройства 21 является выходом обнаружителя ФМ сигнала.

Управляющие входы АЦП 4, регистра 6 сдвига многоразрядных кодов на четыре отсчета и блоков 11 (12) обработки отсчетов соединены с соответствующими выходами генератора 23 синхронизирующих импульсов.

Работает устройство следующим образом.

Входной сигнал с m-кратной фазовой манипуляцией вида

где при m=2 a(t)=0 или 1 и d=π, а при m=4 a(t)=0, 1, 2 или 3 и d=π/2, ƒ0 - частота сигнала на выходе тракта промежуточной частоты приемника, поступает на вход 2 узкополосного фильтра 1 и с его выхода на умножитель частоты 3. При m=2 в качестве УЧ можно использовать перемножитель (квадратичный преобразователь), а при m=4 - устройство возведения сигнала в четвертую степень. Для цифровой реализации удобно в качестве УЧ использовать вычисление модуля сигнала.

При умножении частоты идеального ФМ сигнала (1) формируется гармоническое колебание с частотой ƒ1=m⋅ƒ0. Для реального сигнала после узкополосной фильтрации и нелинейного преобразования появляется гармоника с частотой ƒ1 и боковые спектральные составляющие.

С выхода УЧ сигнал с центральной частотой ƒ1 подается на вход на вход аналого-цифрового преобразователя 4, который в соответствии с тактовыми импульсами, поступающими на его управляющий вход 5 с частотой квантования

формирует четыре отсчета xi1, xi2, xi3, xi4, на i-м периоде Т1=1/ƒ1=1/m⋅ƒ0 сигнала с выхода УЧ, где - xi1, xi2, xi3, xi4 - значения (двоичные коды) отсчетов сигнала на выходе АЦП 1. В соответствии с управляющими сигналами с генератора 23 синхронизирующих импульсов эти значения отсчетов последовательно запоминаются в регистре 6 сдвига многоразрядных кодов на четыре отсчета. Два одинаково функционирующих канала 9 и 10 квадратурной обработки сигнала определяют отклики на четные и нечетные отсчеты сигнала соответственно. На выходе ККО 10 имеем отклик нечетные отсчеты сигнала в виде

а на выходе ККО 9 - отклик на обработку четных отсчетов

где N - количество обрабатываемых периодов Т1 сигнала на выходе УЧ, i - номер текущего периода Т1.

В ККО 9 и 10 реализуется быстрый алгоритм вычисления сумм (3) и (4), описанный в [3], в ходе которого в первых БОО суммируются сначала по 2 соседних разности, затем во вторых БОО по 4 разности и так далее. Всего для расчета сумм (3) и (4) требуется по n=log2N операций сложения (при N=1024 получим n=10).

Результаты вычисления y1 и y2 с выходов ККО 9 и 10 поступают в квадратичный преобразователь 19, где вычисляется величина

пропорциональная амплитуде узкополосного сигнала на частоте ƒ1 (с выхода УЧ). Амплитудно-частотная характеристика канала оценки уровня сигнала

нормированная к 2N, показана на фиг. 2 сплошной линией. Для интервала частот П1 до ближайшего нуля H(ƒ) (фиг. 2) получим

Как видно, при больших N можно обеспечить узкополосную фильтрацию сигнальной компоненты.

Для оценки уровня шума необходимо подавить сигнальную компоненту. Для этого значения

с выходов регистра 15-n сдвига многоразрядных кодов БОО 12-n ККО 10 поступают в вычитатель 18, формирующий величину

Аналогично для четных отсчетов значения с выходов регистра 13-n сдвига многоразрядных кодов БОО 11-n ККО 9 поступают в вычитатель 17, вычисляющий величину

На основе (10) и (11) в квадратичном преобразователе 20 вычисляются величины

Амплитудно-частотная характеристика H(ƒ)=z/S канала оценки уровня помехи, нормированная к 2N, показана на фиг. 2 пунктирной линией. Как видно, на частоте ƒ1 сигнал полностью подавляется. В решающем устройстве по величинам z (12) формируется порог, с которым сравниваются оценки уровня сигнала у (5) для формирования решения о его наличии или отсутствии.

На фиг. 3 показаны результаты статистического имитационного моделирования обнаружителя двоичных (m=2) ФМ сигналов. На интервале времени TC=2,38 мс сформирован идеальный ФМ сигнал с несущей частотой 10 МГц, амплитудой S=1 и случайной модулирующей последовательностью при длительности символа τ=6,4 мкс (64 периода несущей), а на следующем таком же интервале TC информационный сигнал отсутствует. К этому сигналу добавлен достаточно интенсивный белый шум с дисперсией σ2=16 и полученная смесь пропущена через узкополосный фильтр, амплитудно-частотная характеристика K(ƒ) которого показана на фиг. 3а, полоса пропускания фильтра по уровню 3 дБ равна 315 кГц и совпадает с шириной спектра ФМ сигнала. Выходной сигнал фильтра показан на фиг. 3б, а его спектр - на фиг. 3в, отношение сигнал/шум на выходе фильтра равно h2=3.

На фиг. 4а показана зависимость от времени нормированного отклика y(t) канала оценки уровня сигнала (с выхода первого квадратичного преобразователя 19) при умножении частоты в УЧ с помощью вычисления модуля входных отсчетов и настройке канала выделения сигнала на частоту ƒ1=2ƒ0=20 МГц (при этом частота квантования АЦП 4 равна ƒКВ=4ƒ1=8ƒ0=80 МГц). Число N периодов накопления сигнала в ККО выбрано равным N=213=8192, при этом время переходного процесса заполнения многоразрядных регистров сдвига равно N/ƒ1=0,41 мс, а полоса пропускания П=4,88 кГц, что значительно меньше ширины спектра входного сигнала. За счет этого даже при низком входном отношении сигнал/шум наблюдается уверенное обнаружение ФМ сигнала. Инерционность обусловлена необходимостью заполнения многоразрядных регистров сдвига в ККО.

На фиг. 4б приведена временная зависимость нормированного отклика z(t) канала оценки уровня шума с выхода квадратичного преобразователя 20. Как видно, обеспечивается оценка уровня шума при наличии и отсутствии сигнала. Треугольные выбросы в z(t) обусловлены переходными процессами заполнения многоразрядных регистров сдвига. Усреднение z(t) в решающем устройстве 21 позволит сформировать адаптивный порог сравнения для y(t).

Таким образом, предлагаемый цифровой обнаружитель при сравнительно малых аппаратных затратах обеспечивает обнаружение ФМ сигналов с высокой достоверностью.

Источники информации

1. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. «Цифровая обработка сигналов». М.: Радио и связь, 1985.

2. Патент РФ №2527761 С2, H03D 3/00, опубл. 10.09.2014 Бюл. №3, «Обнаружитель фазоманипулированных сигналов», авторы Литвиненко В.П., Литвиненко Ю.В.

3. Патент RU 2257671 C1, Н04В 1/10, опубл. 27.07.2005 Бюл. №21, «Цифровой обнаружитель узкополосных сигналов», авторы Глушков А.Н., Литвиненко В.П., Проскуряков Ю.Д.

Цифровой обнаружитель фазоманипулированных сигналов, содержащий аналого-цифровой преобразователь (АЦП), регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки (ККО) сигналов, каждый из которых содержит последовательно соединенные блоки обработки отсчетов (БОО), при этом количество n БОО определяется двоичным логарифмом числа N обрабатываемых периодов сигнала, n=logN, а каждый из этих блоков состоит из регистра сдвига многоразрядных кодов и сумматора, дополнительно содержит узкополосный фильтр, вход которого является входом цифрового обнаружителя фазоманипулированных сигналов, подключенный к умножителю частоты, выход которого подключен к входу АЦП, выход которого соединен с входом регистра сдвига многоразрядных кодов на четыре отсчета, первый вычитатель, входы которого подключены к четным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО первого ККО, второй вычитатель, входы которого подключены к нечетным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО второго ККО, третий и четвертый вычитатели, входы которых подключены к выходам многоразрядных регистров сдвига последних, с номером n БОО первого и второго ККО соответственно, первый квадратичный преобразователь, входы которого соединены с выходами сумматоров последних БОО первого и второго ККО соответственно, второй квадратичный преобразователь, входы которого соединены с выходами третьего и четвертого вычитателей, и решающее устройство, входы которого соединены с выходами первого и второго квадратичных преобразователей, а выход является выходом обнаружителя.
Цифровой обнаружитель фазоманипулированных сигналов
Цифровой обнаружитель фазоманипулированных сигналов
Цифровой обнаружитель фазоманипулированных сигналов
Источник поступления информации: Роспатент

Показаны записи 141-150 из 245.
27.11.2015
№216.013.942c

Способ получения отверстий в монокристаллических пластинах кремния

Изобретение относится к полупроводниковой технике, а именно к области создания микроструктурных элементов электронных устройств. Способ получения отверстий в монокристаллических пластинах кремния включает подготовку полупроводниковой пластины путем нанесения на ее поверхность мелкодисперсных...
Тип: Изобретение
Номер охранного документа: 0002569551
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.942e

Способ очистки воздуха в разнотемпературной конденсационной камере

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности. Способ очистки воздуха заключается в том, что очищаемый поток...
Тип: Изобретение
Номер охранного документа: 0002569553
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9430

Способ очистки воздуха

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности. Способ очистки воздуха заключается в охлаждении и пересыщении...
Тип: Изобретение
Номер охранного документа: 0002569555
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9448

Мехатронно-модульный робот

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении надежности и работы создаваемых мехатронно-модульных роботов. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой...
Тип: Изобретение
Номер охранного документа: 0002569579
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9929

Индукторный генератор

Изобретение относится к электрическим машинам, к синхронным генераторам индукторного типа, применяемым, например, в автотракторном оборудовании. Технический результат состоит в повышении технологичности конструкции за счет унификации чашек ротора и статора и устранении балластного зазора....
Тип: Изобретение
Номер охранного документа: 0002570829
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.992c

Генератор

Изобретение относится к электротехнике, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым, например, в генераторных установках автотракторной техники. Генератор, содержащий переднюю, заднюю крышки, статор с...
Тип: Изобретение
Номер охранного документа: 0002570832
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9a29

Генератор индукторный

Изобретение относится к электротехнике, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым, например, в генераторных установках автотракторной техники. Генератор индукторный, содержащий переднюю, заднюю крышки,...
Тип: Изобретение
Номер охранного документа: 0002571090
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9d9a

Разнотемпературная конденсационная камера

Изобретение относится к процессам пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, причем тракт конденсационной камеры выполнен с отношением длины к высоте более 20. Одна из продольных стенок тракта выполнена с возможностью...
Тип: Изобретение
Номер охранного документа: 0002571976
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9d9b

Установка для очистки воздуха

Изобретение относится к оборудованию для пылеулавливания. Установка для очистки воздуха содержит увлажнитель всасываемого воздуха, компрессор, увлажнитель сжатого воздуха, подогреватель, разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002571977
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9dac

Способ гибки труб

Изобретение относится к области обработки металлов давлением - изготовлению труб по жесткому пуансону, и может быть использовано в производстве летательных аппаратов, судостроении, а также в других отраслях машиностроения. Осуществляют регулирование давления на стенку трубы при изгибе...
Тип: Изобретение
Номер охранного документа: 0002571994
Дата охранного документа: 27.12.2015
Показаны записи 141-150 из 304.
10.07.2015
№216.013.5c7c

Способ испытания образцов листового материала на растяжение

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях плоской деформации. Способ испытания конструкционного листовых материалов на растяжение заключается в том, что по всей противолежащей рабочей...
Тип: Изобретение
Номер охранного документа: 0002555217
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cad

Способ изготовления проволочного электрода-инструмента для электроэрозионной обработки

Изобретение относится к способу изготовления проволочного электрода-инструмента для электроэрозионной обработки и может быть использовано при электроэрозионном прошивании отверстий малого диаметра с большой глубиной в металлических материалах. Закрепляют конец электрода-инструмента в подвижной...
Тип: Изобретение
Номер охранного документа: 0002555266
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d45

Камера жидкостного ракетного двигателя

Изобретение относится к области ракетной техники может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит смесительную головку, внутреннюю профилированную оболочку, на внешней поверхности которой выполнены ребра тракта охлаждения, наружную...
Тип: Изобретение
Номер охранного документа: 0002555418
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d46

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную головку, регенеративно...
Тип: Изобретение
Номер охранного документа: 0002555419
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6042

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой,...
Тип: Изобретение
Номер охранного документа: 0002556183
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6137

Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции...
Тип: Изобретение
Номер охранного документа: 0002556429
Дата охранного документа: 10.07.2015
+ добавить свой РИД