×
20.01.2018
218.016.130b

Результат интеллектуальной деятельности: СПОСОБ КОМБИНИРОВАННОЙ ОБРАБОТКИ УЗКИХ КАНАЛОВ ДЕТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области комбинированной обработки и может быть использовано для отделочной обработки мелкоразмерных проточных каналов деталей различной формы, например щелевых каналов охлаждающих оболочек, имеющих нестабильную исходную микро- и макро-геометрию поверхности и неравномерные физико-механические свойства поверхностного слоя материала после предварительного формообразования. Способ включает электрохимическую обработку узких каналов деталей при одновременном прокачивании через все каналы токопроводящей жидкости, содержащей не более 2% абразива зернистостью М1-М3. В процессе обработки производят замер расхода жидкости, проходящей через каналы, а электрохимическую обработку осуществляют при напряжении 8-10 В и постоянном давлении прокачиваемой токопроводящей жидкости до достижения заданного расхода жидкости. Изобретение обеспечивает повышение эксплуатационных показателей деталей с узкими каналами за счет получения стабильного микропрофиля поверхности каналов и избирательного выравнивания микропрофиля их поверхности в условиях ограниченного пространства комбинированной электрохимической обработки. 2 ил., 1 пр.

Изобретение относится к области комбинированной обработки и может быть использовано для отделочной обработки мелкоразмерных проточных каналов деталей различной формы, например щелевых каналов охлаждающих оболочек, имеющих нестабильную исходную микро- и макро-геометрию поверхности и неравномерные физико-механические свойства поверхностного слоя материала после предварительного формообразования.

Известен способ [1], применяемый при абразивно-экструзионной обработке деталей, имеющих канал цилиндрической формы, переходящей в конусную. В конусной части канала размещают выравнивающее устройство, имеющее форму конуса. Последнее обеспечивает постоянную площадь поперечного сечения образованного кольцевого зазора по всей длине конусной части. По каналу продавливают вязкоупругую абразивную смесь с обеспечением постоянства объемного расхода абразивной смеси. Такие действия способствуют повышению равномерности обработки канала по всей длине. Этот способ не может быть реализован в отверстиях малого диаметра, а также происходит неравномерный съем материала, увеличивающийся в меньших местах сечения отверстия.

Известен способ упрочняющей обработки внутренних поверхностей деталей [2], заключающийся в подаче на обрабатываемую поверхность шариков с наложением электрического поля, отличающийся тем, что обработку проводят в газожидкостной слабопроводящей среде при напряжении электрического поля 2-5 В в два этапа, причем на первом этапе на обрабатываемую поверхность под углом не более 60° подают микрошарики диаметром 150-200 мкм при давлении сжатого воздуха 0,2-0,4 МПа и времени обработки каждого участка поверхности 30 с, а на втором этапе - микрошарики диаметром около 50 мкм при давлении сжатого воздуха не более 0,3 МПа и времени обработки каждого участка поверхности 15 с. Данный способ не может быть реализован в отверстиях глубиной более 5 диаметров из-за экранирования и взаимного столкновения шариков в отверстии.

Наиболее близким к предлагаемому является способ струйной электрохимической обработки отверстий форсунки [3], включающий подачу токопроводящей жидкости через полый инструмент-катод и обрабатываемые отверстия, отличающийся тем, что первоначально подачу токопроводящей жидкости ведут без подключения тока к инструменту-катоду, регистрируют ее расход через каждое обрабатываемое отверстие, затем определяют отверстие с наибольшим расходом и заглушают все отверстия, после чего включают ток и последовательно открывают отверстия, расположенные за отверстием с наибольшим расходом, и через каждое из них осуществляют прокачку токопроводящей жидкости до достижения расхода, равного расходу через отверстие с наибольшим расходом. Использование совокупности вышеуказанных приемов при электрохимической обработке отверстий форсунок позволяет решить задачу доводки форсунок по равномерности распыла и исключения брака по этой характеристике. Недостатками этого способа являются невозможность обеспечить геометрическую форму отверстия с искаженной исходной формой сечения и глубокого отверстия ввиду неравномерности съема материала и неприменимости к каналам некруглой формы, а также множественные регистрации расхода по каждому отверстию каждой форсунки, что значительно удорожает процесс их доводки.

Предлагаемое изобретение направлено на повышение эксплуатационных показателей деталей с узкими каналами за счет получения стабильного микропрофиля поверхности и избирательное выравнивание микропрофиля поверхности в условиях ограниченного пространства комбинированной электрохимической обработки с добавлением абразива в токопроводящую рабочую жидкость, прокачиваемую одновременно через все каналы детали.

Сущность изобретения и последовательность осуществления способа поясняется чертежами.

На фиг. 1 показана схема комбинированной электрохимической обработки узких каналов детали с добавлением абразива. Сущность способа состоит в прохождении потока токопроводящей жидкости 5, содержащей абразив 3 низкой концентрации (2%) зернистостью М1-М3 одновременно через все каналы детали 1. На технологическую систему «токопроводящая жидкость-деталь» наложен ток низкого напряжения (8-10 В), и она выдерживается при определенном режиме времени до получения заданного расхода при постоянном давлении жидкости. Указанное стрелкой 2 направление потока токопроводящей жидкости с абразивом позволяет исправлять локальные погрешности формы 4, так как абразив активнее работает в местах уменьшения условного прохода и снимает материал именно в этих местах, нуждающихся в дополнительном снятии материала, выравнивая сечение всех каналов одной детали. Электрохимическое же воздействие интенсифицирует процесс механического снятия материала с микровыступов, сокращая время обработки.

При механическом контакте абразивного зерна с выступами снятие материала происходит за счет микрорезания и производительность процесса зависит от концентрации абразива, ориентации единичного абразива в момент взаимодействия с поверхностью, размеров гранул и профиля канала. Одновременное с механическим воздействием воздействие анодного растворения снижает усилие контакта за счет жидкостной и оксидной пленок между заготовкой и гранулой, а также вследствие анодного растворения вершин неровностей на поверхности в местах контакта с гранулой, что снижает сопротивление трения. Все каналы детали выполненны с минимальными чертежными размерами, позволяя удалять микровыступы в пределах допусков на размеры, чтобы не нарушать требования конструкторской документации.

Для проведения комбинированной обработки щелевых каналов в установку для электрохимической доводки встраивают систему для замера расходных характеристик. Сущность работы такой технологической системы заключается в следующем:

- для проведения комбинированной обработки заполняют магистраль токопроводящей жидкостью с добавлением абразива, подают напряжение на деталь и рабочую жидкость, включают установку для комбинированной обработки;

- в процессе комбинированной электрохимической обработки с добавлением абразива автоматически производят замер общего расхода токопроводящей жидкости через проточные каналы при постоянном давлении прокачивания, не отключая напряжение и не прекращая подачи абразива,

- время обработки ограничивается автоматически по достижении заданного расхода. По достижении заданного расхода установка отключается, и проводят промывку системы;

Последовательность работы установки, представленной на фиг. 2, состоит в следующем. Перед началом электрохимической обработки с добавлением абразивного наполнителя производят настройку установки. Для этого обрабатываемую деталь помещают в устройство для комбинированной обработки 6, вентили 9 переводят в положение I, включают насос 12, подается токопроводящая жидкость из емкости 14 при достижении необходимого напора, который отслеживают по манометру 7. Для проведения комбинированной обработки вентили 9 переводят в положение II, включают насос 11, соединяя магистраль с емкостью токопроводящей жидкости с добавлением абразива 13, и включают установку для комбинированной обработки 6, снимают показатели с расходомера 10. По достижении заданного расхода установка 6 отключается автоматически, стендовые вентили 9 переводят в положение I и проводят промывку и очистку системы, используя фильтр 8. Включение насосов 11 и 12, переключение вентилей 9 происходят автоматизировано при помощи пульта управления 15; на пульте также отображаются параметры давления и расхода.

Замер расхода проходящей через каналы токопроводящей жидкости с добавлением абразива в процессе комбинированной обработки позволяет контролировать массовый расход токопроводящей жидкости и при достижении нужного показателя прекращать обработку. Это обеспечивает получение каналов с точным заранее установленным расходом. Сочетание в одном процессе двух видов воздействий: механикоабразивного и электрохимического с одновременным замером расхода токопроводящей жидкости с добавлением абразива позволяет одновременно обеспечивать требуемую геометрическую форму сечения всех каналов детали, необходимую шероховатость и заданный расход. За счет изменения концентрации абразива и напряжения тока можно управлять процессом формирования микрогеометрии поверхности с заданными характеристиками.

Пример осуществления способа. Цилиндр с каналами охлаждения шириной 4 мм и высотой 1,2 мм и исходной шероховатостью поверхностей каналов 5-7 мкм был обработан по вышеописанной схеме на следующих режимах комбинированной обработки: напряжение U=8 В, анодная плотность тока 0,1 А/м2, концентрация абразива 2% зернистостью М1-М3, время 12 с при постоянном давлении прокачивания жидкости 1×0,20 МПа.

В качестве рабочей жидкости использовали слабо проводящую техническую воду. Повторной операции доводки не потребовалось.

Шероховатость поверхности в щелевых каналах цилиндра составила 1,2-1,4 мкм, наклеп поверхностного слоя 3,3÷3,4%, стабильность расходных характеристик на рабочих давлениях согласно конструкторской документации по каналам одной детали 1-1,5%, в партии деталей 2-3%, что отвечает заданным техническим требованиям разработчика к каналам проточных деталей

Источники информации

1. Патент РФ №2469832. Способ абразивно-экструзионной обработки канала с цилиндрической и конусной частями / Авт. Левко В.А., Пшенко Е.Б., 2012 г.

2. Патент РФ на изобретение №2491155. Способ упрочняющей обработки внутренних поверхностей деталей / Авт. Сухочев Г.А., Небольсин Д.М., Смольянникова Е.Г., 2013 г.

3. Патент РФ на изобретение №2162394. Способ доводки форсунок / Авт. Смоленцев В.П.; Смоленцев Г.П.; Смоленцев Е.В.; Дорофеев А.А.; Коптев И.Т., 2001 г.

Способ комбинированной обработки узких каналов деталей, включающий электрохимическую обработку узких каналов деталей при одновременном прокачивании через все каналы токопроводящей жидкости, содержащей не более 2% абразива зернистостью М1-М3, при этом в процессе обработки производят замер расхода жидкости, проходящей через каналы, а электрохимическую обработку осуществляют при напряжении 8-10 В и постоянном давлении прокачиваемой токопроводящей жидкости до достижения заданного расхода жидкости.
СПОСОБ КОМБИНИРОВАННОЙ ОБРАБОТКИ УЗКИХ КАНАЛОВ ДЕТАЛИ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 246.
27.12.2015
№216.013.9dd4

Способ изготовления тракта охлаждения теплонапряженных конструкций

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками. Способ изготовления тракта охлаждения теплонапряженных конструкций, заключающийся в получении токарной...
Тип: Изобретение
Номер охранного документа: 0002572034
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9dd6

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную...
Тип: Изобретение
Номер охранного документа: 0002572036
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e37

Способ установки пленочных образцов при измерении температурной зависимости электрического сопротивления

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой...
Тип: Изобретение
Номер охранного документа: 0002572133
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f21

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов. Синтез осуществляют как...
Тип: Изобретение
Номер охранного документа: 0002572374
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f28

Мехатронно-модульный робот

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность...
Тип: Изобретение
Номер охранного документа: 0002572381
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f29

Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой...
Тип: Изобретение
Номер охранного документа: 0002572382
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f2a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов, повышении эффективности ориентации в окружающей среде и надежности работы создаваемых...
Тип: Изобретение
Номер охранного документа: 0002572383
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a347

Ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям. Ветродвигатель содержит поворотное в горизонтальной плоскости основание с двумя вертикальными роторами, обтекатель и стабилизатор. Поворотное основание снабжено горизонтальной планкой, ориентированной параллельно...
Тип: Изобретение
Номер охранного документа: 0002573441
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a35f

Способ электрохимического изготовления углублений, образующих турбулизаторы на ребрах и в донной части охлаждающих каналов теплонапряженных машин, и устройство для его осуществления

Изобретение относится к получению турбулизаторов на ребрах и в донной части охлаждающих каналов теплонапряженных машин. Способ включает электрохимическую обработку канала электродом-инструментом, имеющим гибкий шаблон из эластичного материала со сквозными окнами по профилю донной части и ребер...
Тип: Изобретение
Номер охранного документа: 0002573465
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3fd

Способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического...
Тип: Изобретение
Номер охранного документа: 0002573623
Дата охранного документа: 20.01.2016
Показаны записи 161-170 из 290.
20.08.2015
№216.013.7282

Установка для очистки воздуха

Изобретение относится к установке для очистки воздуха, содержащей увлажнитель всасываемого воздуха, компрессор, увлажнитель сжатого воздуха, подогреватель, разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, соединенные последовательно между...
Тип: Изобретение
Номер охранного документа: 0002560884
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7283

Способ повышения эффективности очистки воздуха в разнотемпературной конденсационной камере

Изобретение относится к способу повышения эффективности очистки воздуха. Способ заключается в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002560885
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7284

Способ очистки воздуха

Изобретение относится к способу очистки воздуха, заключающемуся в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, содержащим верхнее и нижнее...
Тип: Изобретение
Номер охранного документа: 0002560886
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.728a

Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя

Изобретение относится к электрохимической обработке. Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя, содержащей корпус с пилонами и каналами для подачи компонентов топлива, включает доводку геометрических размеров каналов форсунки...
Тип: Изобретение
Номер охранного документа: 0002560892
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7290

Установка для обработки нанокомпозитов в водородной плазме

Изобретение относится к вакуумно-плазменной обработке нанокомпозитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого...
Тип: Изобретение
Номер охранного документа: 0002560898
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72b0

Ротор торцевого электродвигателя

Изобретение относится к области электромашиностроения, а точнее к торцевым электродвигателям синхронного или асинхронного типа, а точнее к их роторам. Изобретение направлено на совершенствование технологии изготовления роторов, в частности на сокращение расходов на обмоточные работы с...
Тип: Изобретение
Номер охранного документа: 0002560930
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72b2

Стартер с планетарным редуктором

Изобретение относится к автомобилестроению, а именно к конструкциям стартеров с планетарным редуктором. Стартер с планетарным редуктором содержит переднюю и среднюю части корпуса и крышку, тяговое реле, тяговый электромотор и обгонную муфту, тяговый электромотор выполнен в виде водила с...
Тип: Изобретение
Номер охранного документа: 0002560932
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7307

Способ определения типа матрицы композитов металл-диэлектрик

Изобретение относится к области материаловедения, в частности к способам определения критической концентрации одной из фаз в многофазной системе. Способ определения типа матрицы композитов металл-диэлектрик основан на том, что для определения типа матрицы предварительно измеряют электрическое...
Тип: Изобретение
Номер охранного документа: 0002561017
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.73c0

Устройство ориентации гелиоустановки

Изобретение относится к гелиотехнике, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. Устройство ориентации гелиоустановки дополнительно снабжено...
Тип: Изобретение
Номер охранного документа: 0002561207
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73cf

Тракт охлаждения теплонапряженных конструкций

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками. Тракт охлаждения теплонапряженных конструкций содержит внутреннюю профилированную оболочку, на внешней...
Тип: Изобретение
Номер охранного документа: 0002561222
Дата охранного документа: 27.08.2015
+ добавить свой РИД