×
20.01.2018
218.016.12d9

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНИ ИЗ ГИДРОКСИАПАТИТА ДЛЯ ИОННО-ПЛАЗМЕННОГО НАПЫЛЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий и может быть использовано для напыления кальций-фосфатных покрытий на поверхность медицинских имплантатов. Способ включает использование порошка синтетического гидроксиапатита или натурального гидроксиапатита или смесь синтетического и натурального гидроксиапатита с размером частиц менее 60 мкм. Добавляют пластификатор - 10%-ный раствор поливинилового спирта в количестве 6-8% от массы порошка. Увлажненную пластифицированную массу выдерживают в закрытой емкости в течение от 20 до 24 часов при комнатной температуре. Формуют брикеты при давлении не менее 50 МПа, затем брикеты измельчают до размера гранул менее 2 мм, полученные гранулы подвергают одноосному двухстороннему прессованию сначала при давлении от 25 до 30 МПа. Предварительное прессование прекращают и проводят окончательное прессование при давлении от 60 до 80 МПа. Полученную прессовку высушивают в течение 24 часов при температуре 70°C. Помещают ее на подложку с подсыпкой из порошка используемого гидроксиапатита, обжигают в воздушной среде со скоростью нагрева 50°C в час до температуры от 1000 до 1100°C и выдерживают при конечной температуре в течение 2 часов. Технический результат: полученная мишень характеризуется гомогенным составом без примесей, отсутствием перепрессовочных трещин, обладает небольшой огневой усадкой, оптимальными пористостью, прочностью на сжатие и прочностью при изгибе. 3 пр., 1 табл.

Изобретение относится к области формованных керамических изделий на основе фосфатов и может быть использовано для изготовления мишеней из гидроксиапатита для ионно-плазменного напыления кальций-фосфатных покрытий на поверхность медицинских имплантатов.

Известен способ изготовления мишени для получения покрытий [RU 2305717 C2, C23C 14/36 (2006.01), B22F 3/105 (2006.01), опубл. 10.09.2007], заключающийся в том, что формуют по крайней мере три таблетки, образующие рабочий распыляемый, промежуточный и инициирующий слои, из по крайней мере трех порошковых смесей, имеющих экзотермические составы, способные к химическому взаимодействию в режиме самораспространяющегося высокотемпературного синтеза после локального теплового инициирования. Послойно размещают на профилированной металлической пластине через слой шихты металлического припоя таблетки промежуточного слоя, рабочего распыляемого слоя и инициирующего слоя. Запускают процесс самораспространяющегося высокотемпературного синтеза в инициирующем слое и расплавляют под его действием металлический припой и металлический наполнитель, входящий в состав порошковой смеси по крайней мере одного из слоев. Создают давление на слои путем прессования через 2-10 с после завершения процесса самораспространяющегося высокотемпературного синтеза с последующим поддержанием давления не менее 5 с, в результате чего соединяют образованный рабочий распыляемый слой и промежуточный слой с профилированной металлической пластиной через слой металлического припоя, затем удаляют инициирующий слой. В результате процесса самораспространяющегося высокотемпературного синтеза получают рабочий распыляемый слой, содержащий скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксиапатит или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры. Прессование осуществляют путем прямого прессования в штампе или пресс-форме или квазиизотропного прессования со средой, передающей давление, или прессования валком.

Этот способ не обеспечивает создание мишени из чистого материала - гидроксиапатита, так как гидроксиапатит без добавок металла в составе шихты не способен самостоятельно поддерживать самораспространяющийся высокотемпературный синтез. Мишени, полученные этим способом, состоят из трех слоев, что усложняет процесс изготовления мишени.

Известен способ изготовления мишени из синтетического гидроксиапатита с дисперсностью частиц до 80 нм для получения покрытий ионно-плазменными методами по следующей процедуре. Прессование порошка синтетического гидроксиапатита осуществляют при давлении 70 МПа, а затем обжигают полученную прессовку при температуре 1100°C в течение 1 часа на воздухе [Аронов A.M., Пичугин В.Ф., Ешенко Е.В., Рябцева М.А., Сурменев Р.А., Твердохлебов С.И., Шестериков Е.В. Тонкие кальций-фосфатные покрытия, полученные методом высокочастотного магнетронного распыления и перспективы их применения в медицинской технике // Медицинская техника. - 2008. - Т. 3. - С. 18-22].

Известен способ изготовления мишени из гидроксиапатита для нанесения покрытий на различных подложках методом высокочастотного магнетронного распыления [Иевлев В.М., Домашевская Э.П., Терехов В.А., Кашкаров В.М., Вахтель В.М., Третьяков Ю.Д., Путляев В.И., Баринов С.М., Смирнов В.В., Белоногов Е.К., Костюченко А.В. Синтез нанокристаллических пленок гидроксиапатита // Конденсированные среды и межфазные границы. - 2007. - Т. 9. - №3. - С. 209-215], выбранный в качестве прототипа. Для изготовления мишени используют гидроксиапатит, синтезированный осаждением из водных растворов соответствующих солей, добавляют пластификатор и добавку, интенсифицирующие процесс уплотнения. Производят одноосное прессование под давлением 150 МПа. Для удаления пластификатора из массы прессовки осуществляют предварительный нагрев, а затем окончательный обжиг при 900°C и выдерживают при конечной температуре в течение 2 часов.

Способам изготовления мишеней из тонкодисперсных нанопорошков синтетического гидроксиапатита, указанным выше, свойственно затрудненное удаление воздуха из прессовки в процессе прессования мишени толщиной более 4 мм, что, как правило, приводит к образованию перепрессовочных трещин и усадке более 10%.

Задачей изобретения является изготовление твердотельной мишени из гидроксиапатита для напыления покрытий вакуумными ионно-плазменными методами.

В предложенном способе изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий так же, как в прототипе, используют порошок синтетического гидроксиапатита с добавлением пластификатора, производят одноосное прессование, предварительный нагрев для удаления пластификатора, окончательный обжиг с выдержкой при конечной температуре в течение 2 часов.

Согласно изобретению, используют порошок или синтетического, или натурального гидроксиапатита или смесь синтетического и натурального гидроксиапатита с размером частиц менее 60 мкм. В качестве пластификатора используют 10%-ный раствор поливинилового спирта в количестве 6-8% от массы порошка. Увлажненную пластифицированную массу выдерживают в закрытой емкости в течение от 20 до 24 часов при комнатной температуре. Формуют брикеты при давлении не менее 50 МПа, которые затем измельчают до размера гранул менее 2 мм. Полученные гранулы подвергают одноосному двухстороннему прессованию при давлении от 25 до 30 МПа. Затем предварительное прессование прекращают и проводят окончательное прессование при давлении от 60 до 80 МПа. Полученную прессовку высушивают в течение 24 часов при температуре 70°C и помещают на подложку с подсыпкой из порошка используемого гидроксиапатита. Затем прессовку обжигают в воздушной среде со скоростью нагрева 50°C в час до температуры от 1000 до 1100°C.

Использование гидроксиапатита крупнее 60 мкм затрудняет процесс спекания.

Использование пластификатора - раствора 10%-ного поливинилового спирта в количестве менее 6 мас. % от массы порошка не обеспечивает достаточную прочность прессовки, а увеличение количества пластификатора свыше 8 мас. % приводит к выдавливанию жидкой фазы и ухудшению качества прессовки.

Выдержка увлажненной пластифицированной массы в закрытой емкости обеспечивает равномерное распределение раствора пластификатора по объему увлажненного порошка. При этом выдержка менее 20 часов при комнатной температуре недостаточна для усреднения свойств массы. При выдержке до 24 часов достигается требуемое качество пластифицированной массы.

Формирование брикетов и последующее их измельчение для получения гранул повышает технологичность процесса прессования и уменьшает риск возникновения перепрессовочных трещин. В процессе брикетирования происходит уплотнение тонкодисперсного порошка и уменьшение количества газовой фазы, вызывающей перепрессовку. Давление брикетирования не менее 50 МПа обеспечивает получение плотных гранул.

Гранулы размером не крупнее 2 мм обладают хорошей текучестью, что позволяет равномерно заполнять объем пресс-формы.

Предварительное прессование в процессе изготовления мишени обеспечивает удаление большей части воздуха, находящегося в пространстве между гранулами прессовки, причем при давлении свыше 30 МПа образуются замкнутые поры, из которых затруднен выход сжатого воздуха, а при давлении менее 25 МПа прессование не обеспечивает требуемую плотность прессовки.

Окончательное прессование при давлении менее 60 МПа не обеспечивает достаточную плотность и прочность прессовки. Давление свыше 80 МПа не приводит к значительному уплотнению прессовки, но повышает риск появления перепрессовочных трещин.

Предварительный нагрев для удаления пластификатора в течение 24 часов при температуре 70°C позволяет избежать растрескивания прессовки за счет отсутствия большого количества испаряющейся влаги. Чтобы не происходило прилипание прессовки к подложке в процессе обжига осуществляют подсыпку из порошка используемого гидроксиапатита, что позволяет не загрязнять прессовку и избежать растрескивания при усадке прессовки.

Температура окончательного обжига в воздушной среде менее 1000°C не достаточна для приобретения мишенью необходимой механической прочности, а обжиг при температуре свыше 1100°C не приводит к улучшению качества мишени. Время выдержки при конечной температуре 2 часа достаточно для завершения процесса спекания.

Таким образом, предложенный способ, по сравнению с прототипом, позволяет изготовить твердотельную мишень из гидроксиапатита для напыления покрытий вакуумными ионно-плазменными методами, характеризуемую гомогенным составом без примесей, отсутствием перепрессовочных трещин, небольшой огневой усадкой от 6,4 до 7,2% за счет двухстадийного прессования и обжига, с пористостью от 15,2 до 16,6%, прочностью на сжатие от 40,8 до 52,3 МПа, прочностью при изгибе от 14,2 до 16,2 МПа.

В таблице 1 представлены режимы изготовления и свойства готовых мишеней.

Пример 1. Порошок синтетического гидроксиапатита Ca10(PO4)6(OH)2 с размером частиц менее 60 мкм, полученный механохимическим синтезом [Чайкина М.В., Булина Н.В., Просанов И.Ю., Ищенко А.В., Медведко О.В., Аронов A.M. Механохимический синтез гидроксилапатита с SiO44- замещениями // Химия в интересах устойчивого развития. - 2012. - Т. 20. - №4. - С. 477-489], насыпали в фарфоровую чашку, добавили 10%-ный раствор поливинилового спирта в количестве 6% от массы порошка гидроксиапатита и перемешали. Полученную увлажненную пластифицированную массу выдержали в закрытом эксикаторе в течение 24 часов при комнатной температуре. Из полученной массы прессовали брикеты в форме из оргстекла диаметром 50 мм и высотой 30 мм с помощью гидравлического пресса МИРИ-100 при давлении 60 МПа. Затем брикеты измельчили в фарфоровой ступке. Полученные гранулы просеяли через сито с размером ячейки 2 мм. Гранулы размером менее 2 мм засыпали в пресс-форму диаметром 161,6 мм и высотой 30 мм на 2/3 ее объема и произвели одноосное двухстороннее прессование с помощью гидравлического пресса МИРИ-100 сначала при давлении 25 МПа в течение 7 секунд. После этого для выхода воздуха из массы предварительное прессование прекратили. Снова произвели прессование при окончательном давлении 80 МПа в течение 10 секунд. После прессования прессовку вынули из пресс-формы и высушили в течение 24 часов при температуре 70°C в сушильном шкафу. Высушенную прессовку положили на корундовую подложку с подсыпкой из используемого порошка гидроксиапатита и обожгли в электрической печи ТК.98-1400.3Ф с карбидкремниевыми нагревателями в воздушной среде со скоростью нагрева 50°C в час до температуры 1000°C и выдержкой при конечной температуре 2 часа. Таким образом, была получена мишень в форме диска диаметром 150 мм и высотой 10 мм.

Другие примеры изготовления мишеней и свойства готовых мишеней из гидроксиапатита различной природы приведены в таблице 1.

В примере 2 в качестве материала для изготовления мишени использован натуральный гидроксиапатит, полученный из обожженных при 950°C костей крупного рогатого скота.

В примере 3 для изготовления мишени использована смесь синтетического гидроксиапатита и натурального гидроксиапатита (из костей крупного рогатого скота) в равном соотношении.

Способ изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий, включающий использование порошка гидроксиапатита, добавление пластификатора, одноосное прессование, предварительный нагрев для удаления пластификатора и окончательный обжиг с выдержкой при конечной температуре в течение 2 часов, отличающийся тем, что в качестве порошка гидроксиапатита используют натуральный гидроксиапатит или смесь синтетического и натурального гидроксиапатита с размером частиц менее 60 мкм, а в качестве пластификатора используют 10%-ный раствор поливинилового спирта в количестве 6-8% от массы порошка гидроксиапатита, при этом увлажненную пластифицированную массу выдерживают в закрытой емкости в течение от 20 до 24 часов при комнатной температуре, формуют брикеты при давлении не менее 50 МПа, затем брикеты измельчают до размера гранул менее 2 мм, полученные гранулы подвергают одноосному двухстороннему прессованию сначала при давлении от 25 до 30 МПа, затем предварительное прессование прекращают и проводят окончательное прессование при давлении от 60 до 80 МПа, после чего полученную прессовку высушивают в течение 24 часов при температуре 70°C, потом помещают на подложку с подсыпкой из порошка используемого гидроксиапатита, обжигают в воздушной среде со скоростью нагрева 50°C в час до температуры от 1000 до 1100°C.
Источник поступления информации: Роспатент

Показаны записи 261-270 из 275.
12.04.2023
№223.018.4324

Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия, включает модифицирование графитового электрода коллоидными частицами палладия...
Тип: Изобретение
Номер охранного документа: 0002793604
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4d3d

Водорастворимый контейнер для доставки реагента в скважину

Изобретение относится к области бурения скважин и нефтедобычи, в частности к подземному оборудованию скважины, а именно к контейнеру, предназначенному для доставки твердого реагента в скважину и для подачи его в технологическую или в пластовую жидкости. Технический результат – герметичность и...
Тип: Изобретение
Номер охранного документа: 0002793314
Дата охранного документа: 31.03.2023
16.05.2023
№223.018.6241

Оборотный транспортный контейнер для низкоактивных и среднеактивных радиоактивных отходов

Изобретение относится к ядерной технике в области обращения с низкоактивными, среднеактивными радиоактивными отходами. Оборотный транспортный контейнер содержит корпус, крышку, установленную в верхней части корпуса, и вкладыш, который размещен внутри корпуса. Корпус контейнера выполнен...
Тип: Изобретение
Номер охранного документа: 0002783912
Дата охранного документа: 22.11.2022
16.05.2023
№223.018.6271

Способ ионно-лучевой обработки внутренней поверхности протяженных отверстий

Изобретение относится к машиностроению и может быть использовано при обработке внутренней поверхности протяженных отверстий металлических изделий или труб для повышения их поверхностной твердости, коррозионной стойкости и износостойкости. Технический результат - расширение арсенала способов...
Тип: Изобретение
Номер охранного документа: 0002781774
Дата охранного документа: 18.10.2022
21.05.2023
№223.018.68fc

Упругодеформируемое гелеобразное топливо

Изобретение относится к топливу. Предложено упругодеформируемое гелеобразное топливо, содержащее водный раствор поливинилового спирта, эмульгатор полиоксиэтилен, бурый уголь, масло индустриальное, характеризующееся тем, что дополнительно содержит нанопорошок алюминия с размером частиц 90-100 нм...
Тип: Изобретение
Номер охранного документа: 0002794674
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.68fd

Упругодеформируемое гелеобразное топливо

Изобретение относится к топливу. Предложено упругодеформируемое гелеобразное топливо, содержащее водный раствор поливинилового спирта, эмульгатор полиоксиэтилен, бурый уголь, масло индустриальное, характеризующееся тем, что дополнительно содержит нанопорошок алюминия с размером частиц 90-100 нм...
Тип: Изобретение
Номер охранного документа: 0002794674
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6902

2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновые кислоты, их соли и способы их получения

Изобретение относится к способам получения 2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновых кислот и их солей, имеющих общую формулу отличающимся тем, что эквимолярные количества R-, R-замещенного бензила и N-карбамоиламинокислоты суспензируют в этаноле или в метаноле при комнатной...
Тип: Изобретение
Номер охранного документа: 0002794719
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6904

2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновые кислоты, их соли и способы их получения

Изобретение относится к способам получения 2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновых кислот и их солей, имеющих общую формулу отличающимся тем, что эквимолярные количества R-, R-замещенного бензила и N-карбамоиламинокислоты суспензируют в этаноле или в метаноле при комнатной...
Тип: Изобретение
Номер охранного документа: 0002794719
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6adc

Способ получения металлоорганического каркасного материала uio-66 для очистки воды от 1,4-дихлорбензола

Изобретение относится к переработке использованных бутылок из полиэтилентерефталата для использования при очистке воды от 1,4-дихлорбензола. Предложен способ получения металлоорганического каркасного материала UiO-66, включающий добавление к мелко нарезанной стружке использованных бутылок из...
Тип: Изобретение
Номер охранного документа: 0002795682
Дата охранного документа: 05.05.2023
22.05.2023
№223.018.6b80

Устройство для управления сортировкой круглого леса

Изобретение относится к устройствам для сортировки круглого леса и может быть использовано при сортировке древесных стволов по породе. Техническим результатом является уменьшение ошибки слежения за перемещением круглого леса до соответствующего накопителя. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002795741
Дата охранного документа: 11.05.2023
Показаны записи 161-161 из 161.
15.05.2023
№223.018.59fe

Способ изготовления магнезиально-силикатного проппанта и пластифицирующая добавка для его осуществления

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта (ГРП). Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002761435
Дата охранного документа: 08.12.2021
+ добавить свой РИД