×
20.01.2018
218.016.12d9

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНИ ИЗ ГИДРОКСИАПАТИТА ДЛЯ ИОННО-ПЛАЗМЕННОГО НАПЫЛЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий и может быть использовано для напыления кальций-фосфатных покрытий на поверхность медицинских имплантатов. Способ включает использование порошка синтетического гидроксиапатита или натурального гидроксиапатита или смесь синтетического и натурального гидроксиапатита с размером частиц менее 60 мкм. Добавляют пластификатор - 10%-ный раствор поливинилового спирта в количестве 6-8% от массы порошка. Увлажненную пластифицированную массу выдерживают в закрытой емкости в течение от 20 до 24 часов при комнатной температуре. Формуют брикеты при давлении не менее 50 МПа, затем брикеты измельчают до размера гранул менее 2 мм, полученные гранулы подвергают одноосному двухстороннему прессованию сначала при давлении от 25 до 30 МПа. Предварительное прессование прекращают и проводят окончательное прессование при давлении от 60 до 80 МПа. Полученную прессовку высушивают в течение 24 часов при температуре 70°C. Помещают ее на подложку с подсыпкой из порошка используемого гидроксиапатита, обжигают в воздушной среде со скоростью нагрева 50°C в час до температуры от 1000 до 1100°C и выдерживают при конечной температуре в течение 2 часов. Технический результат: полученная мишень характеризуется гомогенным составом без примесей, отсутствием перепрессовочных трещин, обладает небольшой огневой усадкой, оптимальными пористостью, прочностью на сжатие и прочностью при изгибе. 3 пр., 1 табл.

Изобретение относится к области формованных керамических изделий на основе фосфатов и может быть использовано для изготовления мишеней из гидроксиапатита для ионно-плазменного напыления кальций-фосфатных покрытий на поверхность медицинских имплантатов.

Известен способ изготовления мишени для получения покрытий [RU 2305717 C2, C23C 14/36 (2006.01), B22F 3/105 (2006.01), опубл. 10.09.2007], заключающийся в том, что формуют по крайней мере три таблетки, образующие рабочий распыляемый, промежуточный и инициирующий слои, из по крайней мере трех порошковых смесей, имеющих экзотермические составы, способные к химическому взаимодействию в режиме самораспространяющегося высокотемпературного синтеза после локального теплового инициирования. Послойно размещают на профилированной металлической пластине через слой шихты металлического припоя таблетки промежуточного слоя, рабочего распыляемого слоя и инициирующего слоя. Запускают процесс самораспространяющегося высокотемпературного синтеза в инициирующем слое и расплавляют под его действием металлический припой и металлический наполнитель, входящий в состав порошковой смеси по крайней мере одного из слоев. Создают давление на слои путем прессования через 2-10 с после завершения процесса самораспространяющегося высокотемпературного синтеза с последующим поддержанием давления не менее 5 с, в результате чего соединяют образованный рабочий распыляемый слой и промежуточный слой с профилированной металлической пластиной через слой металлического припоя, затем удаляют инициирующий слой. В результате процесса самораспространяющегося высокотемпературного синтеза получают рабочий распыляемый слой, содержащий скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксиапатит или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры. Прессование осуществляют путем прямого прессования в штампе или пресс-форме или квазиизотропного прессования со средой, передающей давление, или прессования валком.

Этот способ не обеспечивает создание мишени из чистого материала - гидроксиапатита, так как гидроксиапатит без добавок металла в составе шихты не способен самостоятельно поддерживать самораспространяющийся высокотемпературный синтез. Мишени, полученные этим способом, состоят из трех слоев, что усложняет процесс изготовления мишени.

Известен способ изготовления мишени из синтетического гидроксиапатита с дисперсностью частиц до 80 нм для получения покрытий ионно-плазменными методами по следующей процедуре. Прессование порошка синтетического гидроксиапатита осуществляют при давлении 70 МПа, а затем обжигают полученную прессовку при температуре 1100°C в течение 1 часа на воздухе [Аронов A.M., Пичугин В.Ф., Ешенко Е.В., Рябцева М.А., Сурменев Р.А., Твердохлебов С.И., Шестериков Е.В. Тонкие кальций-фосфатные покрытия, полученные методом высокочастотного магнетронного распыления и перспективы их применения в медицинской технике // Медицинская техника. - 2008. - Т. 3. - С. 18-22].

Известен способ изготовления мишени из гидроксиапатита для нанесения покрытий на различных подложках методом высокочастотного магнетронного распыления [Иевлев В.М., Домашевская Э.П., Терехов В.А., Кашкаров В.М., Вахтель В.М., Третьяков Ю.Д., Путляев В.И., Баринов С.М., Смирнов В.В., Белоногов Е.К., Костюченко А.В. Синтез нанокристаллических пленок гидроксиапатита // Конденсированные среды и межфазные границы. - 2007. - Т. 9. - №3. - С. 209-215], выбранный в качестве прототипа. Для изготовления мишени используют гидроксиапатит, синтезированный осаждением из водных растворов соответствующих солей, добавляют пластификатор и добавку, интенсифицирующие процесс уплотнения. Производят одноосное прессование под давлением 150 МПа. Для удаления пластификатора из массы прессовки осуществляют предварительный нагрев, а затем окончательный обжиг при 900°C и выдерживают при конечной температуре в течение 2 часов.

Способам изготовления мишеней из тонкодисперсных нанопорошков синтетического гидроксиапатита, указанным выше, свойственно затрудненное удаление воздуха из прессовки в процессе прессования мишени толщиной более 4 мм, что, как правило, приводит к образованию перепрессовочных трещин и усадке более 10%.

Задачей изобретения является изготовление твердотельной мишени из гидроксиапатита для напыления покрытий вакуумными ионно-плазменными методами.

В предложенном способе изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий так же, как в прототипе, используют порошок синтетического гидроксиапатита с добавлением пластификатора, производят одноосное прессование, предварительный нагрев для удаления пластификатора, окончательный обжиг с выдержкой при конечной температуре в течение 2 часов.

Согласно изобретению, используют порошок или синтетического, или натурального гидроксиапатита или смесь синтетического и натурального гидроксиапатита с размером частиц менее 60 мкм. В качестве пластификатора используют 10%-ный раствор поливинилового спирта в количестве 6-8% от массы порошка. Увлажненную пластифицированную массу выдерживают в закрытой емкости в течение от 20 до 24 часов при комнатной температуре. Формуют брикеты при давлении не менее 50 МПа, которые затем измельчают до размера гранул менее 2 мм. Полученные гранулы подвергают одноосному двухстороннему прессованию при давлении от 25 до 30 МПа. Затем предварительное прессование прекращают и проводят окончательное прессование при давлении от 60 до 80 МПа. Полученную прессовку высушивают в течение 24 часов при температуре 70°C и помещают на подложку с подсыпкой из порошка используемого гидроксиапатита. Затем прессовку обжигают в воздушной среде со скоростью нагрева 50°C в час до температуры от 1000 до 1100°C.

Использование гидроксиапатита крупнее 60 мкм затрудняет процесс спекания.

Использование пластификатора - раствора 10%-ного поливинилового спирта в количестве менее 6 мас. % от массы порошка не обеспечивает достаточную прочность прессовки, а увеличение количества пластификатора свыше 8 мас. % приводит к выдавливанию жидкой фазы и ухудшению качества прессовки.

Выдержка увлажненной пластифицированной массы в закрытой емкости обеспечивает равномерное распределение раствора пластификатора по объему увлажненного порошка. При этом выдержка менее 20 часов при комнатной температуре недостаточна для усреднения свойств массы. При выдержке до 24 часов достигается требуемое качество пластифицированной массы.

Формирование брикетов и последующее их измельчение для получения гранул повышает технологичность процесса прессования и уменьшает риск возникновения перепрессовочных трещин. В процессе брикетирования происходит уплотнение тонкодисперсного порошка и уменьшение количества газовой фазы, вызывающей перепрессовку. Давление брикетирования не менее 50 МПа обеспечивает получение плотных гранул.

Гранулы размером не крупнее 2 мм обладают хорошей текучестью, что позволяет равномерно заполнять объем пресс-формы.

Предварительное прессование в процессе изготовления мишени обеспечивает удаление большей части воздуха, находящегося в пространстве между гранулами прессовки, причем при давлении свыше 30 МПа образуются замкнутые поры, из которых затруднен выход сжатого воздуха, а при давлении менее 25 МПа прессование не обеспечивает требуемую плотность прессовки.

Окончательное прессование при давлении менее 60 МПа не обеспечивает достаточную плотность и прочность прессовки. Давление свыше 80 МПа не приводит к значительному уплотнению прессовки, но повышает риск появления перепрессовочных трещин.

Предварительный нагрев для удаления пластификатора в течение 24 часов при температуре 70°C позволяет избежать растрескивания прессовки за счет отсутствия большого количества испаряющейся влаги. Чтобы не происходило прилипание прессовки к подложке в процессе обжига осуществляют подсыпку из порошка используемого гидроксиапатита, что позволяет не загрязнять прессовку и избежать растрескивания при усадке прессовки.

Температура окончательного обжига в воздушной среде менее 1000°C не достаточна для приобретения мишенью необходимой механической прочности, а обжиг при температуре свыше 1100°C не приводит к улучшению качества мишени. Время выдержки при конечной температуре 2 часа достаточно для завершения процесса спекания.

Таким образом, предложенный способ, по сравнению с прототипом, позволяет изготовить твердотельную мишень из гидроксиапатита для напыления покрытий вакуумными ионно-плазменными методами, характеризуемую гомогенным составом без примесей, отсутствием перепрессовочных трещин, небольшой огневой усадкой от 6,4 до 7,2% за счет двухстадийного прессования и обжига, с пористостью от 15,2 до 16,6%, прочностью на сжатие от 40,8 до 52,3 МПа, прочностью при изгибе от 14,2 до 16,2 МПа.

В таблице 1 представлены режимы изготовления и свойства готовых мишеней.

Пример 1. Порошок синтетического гидроксиапатита Ca10(PO4)6(OH)2 с размером частиц менее 60 мкм, полученный механохимическим синтезом [Чайкина М.В., Булина Н.В., Просанов И.Ю., Ищенко А.В., Медведко О.В., Аронов A.M. Механохимический синтез гидроксилапатита с SiO44- замещениями // Химия в интересах устойчивого развития. - 2012. - Т. 20. - №4. - С. 477-489], насыпали в фарфоровую чашку, добавили 10%-ный раствор поливинилового спирта в количестве 6% от массы порошка гидроксиапатита и перемешали. Полученную увлажненную пластифицированную массу выдержали в закрытом эксикаторе в течение 24 часов при комнатной температуре. Из полученной массы прессовали брикеты в форме из оргстекла диаметром 50 мм и высотой 30 мм с помощью гидравлического пресса МИРИ-100 при давлении 60 МПа. Затем брикеты измельчили в фарфоровой ступке. Полученные гранулы просеяли через сито с размером ячейки 2 мм. Гранулы размером менее 2 мм засыпали в пресс-форму диаметром 161,6 мм и высотой 30 мм на 2/3 ее объема и произвели одноосное двухстороннее прессование с помощью гидравлического пресса МИРИ-100 сначала при давлении 25 МПа в течение 7 секунд. После этого для выхода воздуха из массы предварительное прессование прекратили. Снова произвели прессование при окончательном давлении 80 МПа в течение 10 секунд. После прессования прессовку вынули из пресс-формы и высушили в течение 24 часов при температуре 70°C в сушильном шкафу. Высушенную прессовку положили на корундовую подложку с подсыпкой из используемого порошка гидроксиапатита и обожгли в электрической печи ТК.98-1400.3Ф с карбидкремниевыми нагревателями в воздушной среде со скоростью нагрева 50°C в час до температуры 1000°C и выдержкой при конечной температуре 2 часа. Таким образом, была получена мишень в форме диска диаметром 150 мм и высотой 10 мм.

Другие примеры изготовления мишеней и свойства готовых мишеней из гидроксиапатита различной природы приведены в таблице 1.

В примере 2 в качестве материала для изготовления мишени использован натуральный гидроксиапатит, полученный из обожженных при 950°C костей крупного рогатого скота.

В примере 3 для изготовления мишени использована смесь синтетического гидроксиапатита и натурального гидроксиапатита (из костей крупного рогатого скота) в равном соотношении.

Способ изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий, включающий использование порошка гидроксиапатита, добавление пластификатора, одноосное прессование, предварительный нагрев для удаления пластификатора и окончательный обжиг с выдержкой при конечной температуре в течение 2 часов, отличающийся тем, что в качестве порошка гидроксиапатита используют натуральный гидроксиапатит или смесь синтетического и натурального гидроксиапатита с размером частиц менее 60 мкм, а в качестве пластификатора используют 10%-ный раствор поливинилового спирта в количестве 6-8% от массы порошка гидроксиапатита, при этом увлажненную пластифицированную массу выдерживают в закрытой емкости в течение от 20 до 24 часов при комнатной температуре, формуют брикеты при давлении не менее 50 МПа, затем брикеты измельчают до размера гранул менее 2 мм, полученные гранулы подвергают одноосному двухстороннему прессованию сначала при давлении от 25 до 30 МПа, затем предварительное прессование прекращают и проводят окончательное прессование при давлении от 60 до 80 МПа, после чего полученную прессовку высушивают в течение 24 часов при температуре 70°C, потом помещают на подложку с подсыпкой из порошка используемого гидроксиапатита, обжигают в воздушной среде со скоростью нагрева 50°C в час до температуры от 1000 до 1100°C.
Источник поступления информации: Роспатент

Показаны записи 241-250 из 275.
31.05.2019
№219.017.7019

Способ определения интенсивности и количества дождевых осадков

Изобретение относится к области метеорологии и может быть использовано для определения интенсивности и количества дождевых осадков в приземном слое атмосферы. Сущность: в период выпадения дождевых осадков производят непрерывные измерения плотности потока бета-излучения на некоторой высоте от...
Тип: Изобретение
Номер охранного документа: 0002689839
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.71d4

Способ измерения активной мощности в трехфазной симметричной сети

Изобретение относится к измерению электрических величин и может быть использовано для определения активной мощности в трехфазных сетях переменного тока. Способ измерения активной мощности в трехфазной симметричной сети заключается в том, что измеряют датчиками тока и напряжения, работающими на...
Тип: Изобретение
Номер охранного документа: 0002689994
Дата охранного документа: 30.05.2019
01.06.2019
№219.017.7249

Устройство для измерения изменений во времени давления жидкости или газа

Изобретение относится к измерительной технике, а именно к приборам для измерения изменений во времени давления жидкости или газа, и может быть использовано в нефтегазодобывающей, нефтехимической, химической, пищевой и других отраслях промышленности, в коммунальном хозяйстве. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002690010
Дата охранного документа: 30.05.2019
28.06.2019
№219.017.9947

Способ получения оптических изомеров мета-хлорбензгидриламина

Изобретение относится к области органической химии, а именно к способу получения оптических изомеров (R)-(-)- и (S)-(+)-мета-хлорбензгидриламина. Способ заключается в перетирании рацемического мета-хлорбензгидриламина с оптически активной винной кислотой в условиях отсутствия растворителя в...
Тип: Изобретение
Номер охранного документа: 0002692684
Дата охранного документа: 26.06.2019
10.07.2019
№219.017.a9d0

Устройство для моделирования передачи постоянного тока в энергетической системе

Изобретение относится к области обработки данных и может быть использовано для моделирования передачи постоянного тока в энергетической системе. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов передачи...
Тип: Изобретение
Номер охранного документа: 0002694014
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b2c9

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: измеряют плотность потока бета-излучения над снежным покровом в период перед началом таяния снега в дневное время суток не менее чем через 3,5 часа после выпадения...
Тип: Изобретение
Номер охранного документа: 0002694080
Дата охранного документа: 09.07.2019
13.07.2019
№219.017.b33b

Дисмембратор

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано в строительной, химической и других отраслях промышленности, в частности для переработки твердого кускового сырья, например фторангидрита. Дисмембратор содержит цилиндрический корпус с загрузочным...
Тип: Изобретение
Номер охранного документа: 0002694313
Дата охранного документа: 11.07.2019
25.07.2019
№219.017.b897

Устройство для моделирования многотерминальной передачи постоянного тока в энергетической системе

Изобретение относится к области моделирования объектов энергетических систем. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов функционирования многотерминальной передачи постоянного тока и функционирование...
Тип: Изобретение
Номер охранного документа: 0002695501
Дата охранного документа: 23.07.2019
31.07.2019
№219.017.ba41

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: проводят три измерения мощности дозы гамма-излучения в приземной атмосфере. Первое измерение производят до начала установления снежного покрова, второе - при толщине...
Тип: Изобретение
Номер охранного документа: 0002695949
Дата охранного документа: 29.07.2019
01.08.2019
№219.017.baea

Способ ультразвукового контроля дефектности металлических изделий

Использование: для дефектоскопии металлических изделий сложной формы. Сущность изобретения заключается в том, что способ ультразвукового контроля дефектности металлических изделий включает измерение двумерного профиля поверхности изделия с помощью электрического щупа, выбирая три реперные точки...
Тип: Изобретение
Номер охранного документа: 0002695950
Дата охранного документа: 29.07.2019
Показаны записи 161-161 из 161.
15.05.2023
№223.018.59fe

Способ изготовления магнезиально-силикатного проппанта и пластифицирующая добавка для его осуществления

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта (ГРП). Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002761435
Дата охранного документа: 08.12.2021
+ добавить свой РИД