×
20.01.2018
218.016.129c

Результат интеллектуальной деятельности: Способ получения нанокомпозиционных катодов для литий-ионных аккумуляторов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к способу получения нанокомпозиционных положительных электродов для литий-ионных аккумуляторов. При реализации способа выбирают наноразмерный порошок катодного материала на основе соединения LiMeSiO, либо LiMePO, либо LiMeO, где Me - переходные металлы, покрывают их тонкой пленкой на основе системы LiMeO, где Me - V, Ge, Nb, Mo, La, Ta, Ti, толщиной 5-7 нм, затем проводят термообработку покрытых порошков при температуре 300-500°С в течение 10-12 ч, из полученного композиционного материала изготавливают положительный электрод, на который наносят пассивационное покрытие на основе AlO с использованием реагента триметилалюминия (ТМА) и паров воды, далее проводят термообработку электродов в течение 10-12 ч при температуре 180-200°С. Повышение литий-ионной проводимости, а также устойчивости к воздействию агрессивной среды электролита является техническим результатом изобретения. 1 табл.

Изобретение относится к электротехнической области и может быть использовано в транспортных и космических системах с улучшенными удельными характеристиками.

Известен способ получения нанокомпозиционного катода для литий-ионного аккумулятора с использованием ионопроводящего покрытия из LiTaO3. С помощью технологии атомно-слоевого осаждения соединение LiTaO3 наносят на готовый электрод. В качестве реагентов для синтеза LiTaO3 используют LiOtBu, (CH3)3COLi), (Ta(OEt)5, Та(ОС2Н5)5 и H2O. Электрод изготовлен из никеля кобальт марганцевой шпинели (LiNi1/3Co1/3Mn1/3O2) [Нанесение твердого электролита на катодный материал, применяемый в литий-ионных аккумуляторах, работающий при высоких напряжениях с хорошей циклической стабильностью // Energy Environ. Sci., 2014, 7, с. 768-778].

Недостатками способа являются повышенная ионная проводимость только поверхностного слоя катода вследствие нанесения покрытия на готовый катод, частичное растворение покрытия в электролите.

Известен способ получения защитных покрытий для катодных порошков литий-ионных аккумуляторов [US заявка на изобретение №20140234715]. На порошки катодных материалов наносят тонкие пленки методом атомно-слоевого осаждения. В качестве материалов для покрытий порошков выбирают AlxOy, AlFx или Alx(PO4)y.

Недостатком способа является то, что при нанесении оксида алюминия на порошки снижается электронно-ионная проводимость катодных материалов, что приводит к снижению удельных характеристик и уменьшению циклической стабильности литий-ионных аккумуляторов.

Известен способ получения катода литий-ионного аккумулятора методом атомно-слоевого осаждения путем нанесения тонкой пленки оксида алюминия на поверхность катода, выбранный за прототип [Увеличение циклической стабильности катодного материала LiCoO2, применяемого в литий-ионных аккумуляторах, путем модифицирования поверхности методом атомно-слоевого осаждения // Journal of The Electrochemical Society, 157 (1), с. A75-A81 (2010)]. В данной работе в качестве катода литий-ионного аккумулятора использовали положительный электрод, изготовленный из катодного микронного порошка LiCoO2. Изготовленный катод был пассивирован оксидом алюминия. В качестве реагентов для нанесения Al2O3 методом атомно-слоевого осаждения использовали триметилалюминий (ТМА) и воду. Толщина наносимого покрытия Al2O3 варьировалась от 0.22 до 2.2 нм.

Недостатками прототипа являются недостаточная литий-ионная проводимость катодного порошкового материала, которая приводит к снижению циклического ресурса литий-ионного аккумулятора. Использование микронных порошков катодного материала не позволяет достигать высоких скоростей заряда-разряда литий-ионного аккумулятора. Отсутствие термообработки после нанесения слоя Al2O3 снижает способность покрытия противостоять растворению катодного материала.

Задачей изобретения является повышение литий-ионной проводимости и устойчивости к воздействию агрессивной среды электролита литий-ионного аккумулятора.

Для решения поставленной задачи предложен способ получения нанокомпозиционных положительных электродов для литий-ионных аккумуляторов. Выбирают наноразмерный порошок катодного материала на основе соединения Li2MeSiO4, либо LiMePO4, либо LiMeO2, где Me - переходные металлы, например, Fe, Со, Ni, Mn. Покрывают тонкой пленкой на основе системы LixMeyO, где Me - V, Ge, Nb, Mo, La, Та, Ti, толщиной 5-7 нм, затем проводят термообработку покрытых порошков при температуре 300-500°С в течение 10-12 ч. Из полученного композиционного материала изготавливают положительный электрод. На изготовленный электрод наносят пассивационное покрытия на основе Al2O3, толщина покрытия 1-3 нм, с использованием реагента (ТМА) и паров воды, далее проводят термообработку покрытых Al2O3 электродов в течение 10-12 ч при температуре 180-200°С.

Покрытия на основе системы LixMeyO (литий-ионная проводимость выше, чем у систем Li2MeSiO4, LiMePO4, LiMeO2, на 2-8 порядков) приводят к увеличению литий-ионной проводимости катодного материала по причине образования тонкого слоя на поверхности катодного порошка с повышенной концентрацией ионов лития, которые дополнительно обеспечивают литий-ионный транспорт вглубь порошков катодных материалов, увеличивая коэффициент диффузии лития. Термообработку полученных покрытий проводят при определенной температуре и в течение определенного времени с целью получения кристаллической структуры, которая, в свою очередь, обеспечивает упорядоченность строения покрытия на атомарном уровне, создавая тем самым каналы для успешного прохождения ионов лития из глубины катодного материала, тем самым повышая литий-ионную проводимость порошков катодных материалов. Полученные тонкие пленки на поверхности электрода защищают (пассивируют) границу взаимодействия между электролитом и положительным электродом, предотвращая тем самым растворение катодного материала в электролите, а также уменьшая толщину непроводящей пленки, образующуюся во время работы аккумулятора, тем самым пленки оксида алюминия значительно повышают устойчивость катодных материалов к воздействию агрессивной среды электролита. Далее проводят термообработку покрытых Al2O3 электродов, данная процедура позволяет проникнуть оксиду алюминия в поверхностный слой полимерного связующего, входящего в состав положительного электрода, которое при температуре 180-200°С обладает повышенной активностью, что, в свою очередь, приводит к более равномерному покрытию электрода, тем самым повышает устойчивость катодных материалов к воздействию агрессивной среды электролита. Таким образом, отличительные признаки являются существенными и необходимыми для решения поставленной задачи

В формуле LixMeyO в качестве металлов выбраны V, Ge, Nb, Mo, La, Та, Ti по причине образования с этими металлами соединений, обладающих смешенной электронно-ионной проводимостью, а также по причине того, что данные металлы обладают оптимальными атомными радиусами, при формировании кристаллической решетки с которыми образуются каналы, диаметры которых позволяют беспрепятственно и обратимо диффундировать ионам лития в объем кристалла. В качестве исходных катодных порошков выбирают соединения Li2MeSiO4, LiMePO4, LiMeO2, где Me - металлы, например Fe, Со, Ni, Mn, по причине того, что металлы Fe, Со, Ni, Mn являются наиболее распространенными переходными металлами, которые обладают переменными степенями окисления во время прохождения окислительно-восстановительной реакции в процессе работы аккумулятора.

При толщине покрытия менее 5 нм концентрация лития на поверхности наноразмерного порошка катодного материала не будет достаточной, чтобы добиться максимального эффекта по диффузии ионов лития, при толщине более 7 нм начинает возрастать сопротивление катодного материала, что приводит к ухудшению электрохимических характеристик, тем самым диапазон 5-7 нм является оптимальным.

Режимы термообработки для композиций LixMeyO, где Me - Sc, V, Ge, Nb, Mo, La, Та, Ti, различны, но для всех соединений термообработка при температуре менее 300°С и менее 10 ч не приведет к образованию кристаллической структуры, что, в свою очередь, не обеспечит повышение литий-ионной проводимости. При температуре термообработки более 500°С и выдержке более 12 ч в наноразмерных порошках катодных материалах на основе соединения Li2MeSiO4, LiMePO4, LiMeO2 будут происходить структурные и морфологические изменения, приводящие к росту частиц и изменению параметров кристаллической решетки, что будет снижать литий-ионную проводимость катодного материала.

На изготовленный электрод наносят пассивационное покрытие на основе Al2O3, толщина покрытия 1-3 нм, с использованием реагента (ТМА) и паров воды. Так как оксид алюминия является не проводящим ионы лития материалом, а является защитным покрытием, то толщины более 3 нм значительно увеличивают сопротивление и ухудшают литий-ионную проводимость, если же толщина покрытия менее 1 нм, то значительного воздействия на защитные свойства электрода покрытие не оказывает, и катодный материал так же растворяется во время работы аккумулятора. Таким образом, диапазон от 1-3 нм является оптимальным для обеспечения устойчивости к воздействию агрессивной среды электролита литий-ионного аккумулятора.

При термической обработке дольше 12 ч при температуре более 200°С начнется разложение полимерного связующего, что приведет к повреждению и неработоспособности электрода. При термической обработке менее 10 ч при температуре менее 180°С полимерное связующее не будет обладать высокой вязкостью, и проникновение частиц оксида алюминия будет невозможно, что приведет к неэффективному использованию защитного покрытия.

Для получения положительных электродов выбрали наноразмерные порошки катодного материала Li2FeSiO4, LiFePO4, LiCoO2, LiNi0,33Со0,33Mn0,33O2, Li2MnSiO4, Li2CoSiO4, нанесли на поверхности порошков покрытия LiTaO3, Li2V3O8, Li2Mo0,25V2,75O8, Li4GeO4, Li0,255La0,582TiO3, Li3NbO4.

Затем провели термообработку покрытых порошков при температуре 300-500°С в течение 10-12 ч. Из полученного композиционного материала изготавливают положительный электрод. На изготовленный электрод наносят пассивационное покрытие на основе Al2O3, толщина покрытия 1-3 нм, с использованием реагента (ТМА) и паров воды, далее проводят термообработку покрытых Al2O3 электродов в течение 10-12 ч при температуре 180-200°С (табл. 1).

Полученные электроды, выполненные из нанокомпозиционных порошков, для литий-ионных аккумуляторов обладают повышенной литий-ионной проводимостью и устойчивостью к воздействию агрессивной среды электролита аккумулятора за счет использования определенных материалов и применения оригинальной технологии получения, которая характеризуется покрытием катодного порошка тонкой пленкой литий-ионно проводящего покрытия с последующей термообработкой и покрытием из оксида алюминия готового катода с последующей термообработкой.

Способ получения нанокомпозиционных положительных электродов для литий-ионных аккумуляторов, включающий пассивирование электрода оксидом алюминия методом атомно-слоевого осаждения с использованием реагента триметилалюминия (ТМА) и паров воды, отличающийся тем, что выбирают нанопорошок катодного материала на основе соединения LiMeSiO, либо LiMePO, либо LiMeO, где Me - металл, выбранный из Fe, Со, Ni, Mn, наносят на поверхность порошка покрытие на основе системы LiMeO толщиной 5-7 нм, проводят термообработку при температуре 300-500°С в течение 10-12 ч, из композиционного порошкового материала изготавливают положительный электрод, проводят термообработку покрытых AlO (1-3 нм) электродов в течение 10-12 ч при температуре 180-200°С.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 128.
10.06.2016
№216.015.4508

Способ фильтрации тока намагничивания и воспроизведения вторичного тока силовых и измерительных трансформаторов напряжения

Изобретение относится к электротехнике и может быть использовано в различных средствах релейной защиты, противоаварийного управления энергосистем, измерения, регистрации аварийных событий и диагностики состояния оборудования. Технический результат состоит в снижении погрешности фильтрации тока...
Тип: Изобретение
Номер охранного документа: 0002586115
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5182

Способ получения магнитотвердого материала smmn

Изобретение относится к области получения магнитотвердых материалов, которые могут быть использованы в электротехнике и машиностроении. Предложенный способ получения магнитотвердого соединения SmMN позволяет увеличить коэрцитивную силу (H) и температуру Кюри (Т) конечного продукта, что является...
Тип: Изобретение
Номер охранного документа: 0002596166
Дата охранного документа: 27.08.2016
25.08.2017
№217.015.bac6

Способ получения катодного материала на основе системы lifesio

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками. В качестве начального компонента выбирают наноразмерный порошок аэросила (SiO) с удельной поверхностью 350-380 м/г,...
Тип: Изобретение
Номер охранного документа: 0002615697
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bad7

Топливная форсунка газотурбинного двигателя

Изобретение относится к авиастроению. Топливная форсунка газотурбинного двигателя, в которой одним из электродов, соединенным с потенциальным выходом источника электрического напряжения, является металлический внутренний воздушный завихритель и соединенная проводящей перемычкой металлическая...
Тип: Изобретение
Номер охранного документа: 0002615618
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.c5b0

Бесфлаттерная многодисковая фрикционная муфта для соединения валов привода с возможностью разнонаправленного их вращения

Изобретение относится к области машиностроения, а более конкретно к муфтам для соединения приводных валов, например, для трансмиссий. Бесфлаттерная многодисковая фрикционная муфта (5) для соединения валов (1, 3) привода с возможностью разнонаправленного их вращения содержит корпус (6)...
Тип: Изобретение
Номер охранного документа: 0002618661
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c697

Поглощающий аппарат автосцепки

Изобретение относится к железнодорожному транспорту, а именно к полимерно-фрикционным поглощающим аппаратам автосцепных устройств вагонов и локомотивов. Поглощающий аппарат автосцепки содержит корпус в виде цилиндрической втулки с днищем, с установленными в нем упругим элементом и нажимным...
Тип: Изобретение
Номер охранного документа: 0002618668
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6c8

Механизм распределения мощности в трансмиссии автомобиля

Изобретение относится к дифференциальным механизмам распределения мощности. Механизм распределения мощности (МРМ) в трансмиссии автомобиля содержит двухстепенную редукторную часть. Входное звено МРМ опосредованно связано с двигателем, а выходные звенья опосредованно, например через полуоси, - с...
Тип: Изобретение
Номер охранного документа: 0002618830
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d347

Семейство пептидов - ингибиторов активности белка reca, блокирующих sos-ответ у бактерий

Изобретение относится к области биотехнологии, конкретно к новым пептидным структурам, обладающим антибактериальными свойствами, и может быть использовано в медицине. Заявляется семейство пептидов, обладающих ингибирующей активностью против бактериальных белков RecA, а также свойством...
Тип: Изобретение
Номер охранного документа: 0002621862
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d55f

Способ получения тонкопленочного катода

Изобретение относится к способу получения структуры тонкопленочного катода на основе системы LiFeMnSiO и позволяет получить катод с монокристаллической бездефектной структурой с равномерным распределением химического состава по объему. Повышение удельной емкостью и циклической...
Тип: Изобретение
Номер охранного документа: 0002623104
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d678

Способ получения тонкопленочного анода

Изобретение относится к области электротехники, а именно к способу получения тонкопленочного анода, и может быть использовано при изготовлении литий-ионных аккумуляторных батарей. Повышение циклической стабильности анода с сохранением его высокой удельной емкости и монокристаллической...
Тип: Изобретение
Номер охранного документа: 0002622905
Дата охранного документа: 21.06.2017
Показаны записи 11-20 из 41.
10.06.2016
№216.015.4508

Способ фильтрации тока намагничивания и воспроизведения вторичного тока силовых и измерительных трансформаторов напряжения

Изобретение относится к электротехнике и может быть использовано в различных средствах релейной защиты, противоаварийного управления энергосистем, измерения, регистрации аварийных событий и диагностики состояния оборудования. Технический результат состоит в снижении погрешности фильтрации тока...
Тип: Изобретение
Номер охранного документа: 0002586115
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5182

Способ получения магнитотвердого материала smmn

Изобретение относится к области получения магнитотвердых материалов, которые могут быть использованы в электротехнике и машиностроении. Предложенный способ получения магнитотвердого соединения SmMN позволяет увеличить коэрцитивную силу (H) и температуру Кюри (Т) конечного продукта, что является...
Тип: Изобретение
Номер охранного документа: 0002596166
Дата охранного документа: 27.08.2016
25.08.2017
№217.015.bac6

Способ получения катодного материала на основе системы lifesio

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками. В качестве начального компонента выбирают наноразмерный порошок аэросила (SiO) с удельной поверхностью 350-380 м/г,...
Тип: Изобретение
Номер охранного документа: 0002615697
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bad7

Топливная форсунка газотурбинного двигателя

Изобретение относится к авиастроению. Топливная форсунка газотурбинного двигателя, в которой одним из электродов, соединенным с потенциальным выходом источника электрического напряжения, является металлический внутренний воздушный завихритель и соединенная проводящей перемычкой металлическая...
Тип: Изобретение
Номер охранного документа: 0002615618
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.c5b0

Бесфлаттерная многодисковая фрикционная муфта для соединения валов привода с возможностью разнонаправленного их вращения

Изобретение относится к области машиностроения, а более конкретно к муфтам для соединения приводных валов, например, для трансмиссий. Бесфлаттерная многодисковая фрикционная муфта (5) для соединения валов (1, 3) привода с возможностью разнонаправленного их вращения содержит корпус (6)...
Тип: Изобретение
Номер охранного документа: 0002618661
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c697

Поглощающий аппарат автосцепки

Изобретение относится к железнодорожному транспорту, а именно к полимерно-фрикционным поглощающим аппаратам автосцепных устройств вагонов и локомотивов. Поглощающий аппарат автосцепки содержит корпус в виде цилиндрической втулки с днищем, с установленными в нем упругим элементом и нажимным...
Тип: Изобретение
Номер охранного документа: 0002618668
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6c8

Механизм распределения мощности в трансмиссии автомобиля

Изобретение относится к дифференциальным механизмам распределения мощности. Механизм распределения мощности (МРМ) в трансмиссии автомобиля содержит двухстепенную редукторную часть. Входное звено МРМ опосредованно связано с двигателем, а выходные звенья опосредованно, например через полуоси, - с...
Тип: Изобретение
Номер охранного документа: 0002618830
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d347

Семейство пептидов - ингибиторов активности белка reca, блокирующих sos-ответ у бактерий

Изобретение относится к области биотехнологии, конкретно к новым пептидным структурам, обладающим антибактериальными свойствами, и может быть использовано в медицине. Заявляется семейство пептидов, обладающих ингибирующей активностью против бактериальных белков RecA, а также свойством...
Тип: Изобретение
Номер охранного документа: 0002621862
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d55f

Способ получения тонкопленочного катода

Изобретение относится к способу получения структуры тонкопленочного катода на основе системы LiFeMnSiO и позволяет получить катод с монокристаллической бездефектной структурой с равномерным распределением химического состава по объему. Повышение удельной емкостью и циклической...
Тип: Изобретение
Номер охранного документа: 0002623104
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d678

Способ получения тонкопленочного анода

Изобретение относится к области электротехники, а именно к способу получения тонкопленочного анода, и может быть использовано при изготовлении литий-ионных аккумуляторных батарей. Повышение циклической стабильности анода с сохранением его высокой удельной емкости и монокристаллической...
Тип: Изобретение
Номер охранного документа: 0002622905
Дата охранного документа: 21.06.2017
+ добавить свой РИД