×
20.01.2018
218.016.11e7

Результат интеллектуальной деятельности: СПОСОБ ДЕЗАГРЕГИРОВАНИЯ ПОРОШКА НАТРИЕТЕРМИЧЕСКОГО ЦИРКОНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению металлических порошков и может найти применение, в частности, в пиротехнике и химической технологии. В способе дезагрегирования порошка натриетермического циркония осуществляют обработку агрегированного порошка путем перемешивания в среде с водородным показателем рН>7 с получением диспергированного порошка, который затем отмывают до нейтрального значения водородного показателя среды. Отмывка диспергированного порошка может быть проведена водой. Отмывка диспергированного порошка может быть также проведена раствором с рН<7 при температуре 18-200°С, а затем водой. Обеспечивается разрушение агрегатов частиц порошка и уменьшение их количества, а также растворение мелкой фракции порошка натриетермического циркония и получение крупной фракции порошка циркония. 2 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к области металлургии, порошковой металлургии, в частности к способам получения и диспергирования металлических порошков, и может найти применение в пиротехнике, химической технологии и других сферах получения и применения порошковых материалов.

Для получения дезагрегированных металлических порошков из различного металлического сырья, а также из их агрегированного и агломерированного состояния, применяют различные диспергационные методы, например механический размол при помощи мельниц различных систем (шаровые, планетарные, вихревые, коллоидные мельницы) [Пористые проницаемые материалы. Справочник. Под ред. С.В. Белова. М.: Металлургия, 1987, с. 63, 64 /1/], ультразвуковое диспергирование в жидкой среде, основанное на явлении кавитации, а также интенсивное перемешивание (истирание) в сочетании с поверхностно-активными веществами, создающими электростатический барьер на поверхности частиц, предотвращающий их слипание [А. Шелудко. Коллоидная химия. Пер. с болгарского. Изд. иностр. литературы. 1960, с. 18-21 /2/].

Высокодисперсные порошковые металлы, в частности натриетермический цирконий, способны обратимо комковаться не только за счет адгезионных сил, но и за счет полимеризации с образованием химических мостиковых связей между отдельными частицами [У.Б. Блюменталь. Химия циркония. Перевод с английского под ред. Л.Н. Комиссаровой, В.И. Спицина. М.: Изд. иностр. литературы, 1963, с. 30-167 /3/]. Как правило, это происходит, если при получении порошка имеется стадия обработки в кислых водных растворах, например, для удаления побочных растворимых продуктов получения металлического порошка [В.М. Орлов, Л.А. Федорова, П.Г. Бережко, П.Т. Гусев, В.В. Ярошенко. Натриетермические порошки циркония. В сборнике «Инновационный потенциал Кольской науки. Апатиты: Издательство Кольского научного центра РАН, 2005, с. 198-201 /4/]. Известно, что в слабокислых растворах цирконий проявляет склонность к гидролитической полимеризации посредством оксомостиков. В определенных условиях могут образовываться чрезвычайно устойчивые полимеры с элементарной ячейкой, представляющей тетрамерный цикл из атомов, связанных оксо- и, иногда, частично гидроксомостиками [Muha G.M., Vauhan Р.А. Structure of the Complex Ion in Aqueous Solutions of Zirconyl and Hafhyl Oxyhalides// J. Chem. Phys. 1960, Vol. 33, p. 194-199 /5/].

Известен патент [RU 2410204 «Способ получения дисперсии наноразмерных порошков металлов», МПК B22F 9/24, опубл. 27.01.2011 /6/], в котором описан способ получения устойчивых суспензий наноразмерных частиц с использованием ультразвуковых колебаний. Ультразвуковому воздействию с целью разрушения агрегатов подвергается среда, дополнительно содержащая поверхностно-активные вещества. В качестве ПАВ используют алкилдиолы, диалкилсульфиды, диалкилдисульфиды, диалкилтиокарбаматы или алкилтиофенолы. При этом ПАВ добавляют в количестве, определяемом из расчета образования на наночастицах, по меньшей мере, мономолекулярного слоя. За счет этого обеспечивается повышение дисперсности взвешенной фазы и стабильность коллоидного раствора.

Способ /6/ имеет недостаток, заключающийся в том, что введение в дисперсную систему, состоящую из порошка натриетермического циркония и воды, эмульгаторов и поверхностно-активных добавок, повышающих устойчивость дисперсной системы, приводит к загрязнению порошка и требует введения дополнительной стадии его очистки. Применение только ультразвука не обеспечивает надежное дезагрегирование порошка натриетермического циркония в силу его обратимости из-за восстановления химической связанности между его частицами по кислородным мостикам /3/.

Наиболее близким к заявляемому способу является способ по патенту [RU 2523643 «Способ получения суспензии высокодисперсных частиц металлов и их соединений и устройство для его осуществления», МПК B22F 9/04, опубл. 20.07.2014 /7/], включающий механическое перемешивание порошка, представляющего собой агрегаты наноразмерных частиц, и дисперсионной среды для получения суспензии с равномерно распределенными в объеме суспензии агрегатами и ультразвуковое диспергирование агрегатов. При этом механическое перемешивание и ультразвуковое диспергирование осуществляют при перемещении суспензии по замкнутому гидравлическому контуру таким образом, чтобы последовательно осуществлялось то механическое перемешивание суспензии, то ее ультразвуковое диспергирование.

Однако данный способ не может быть применен для эффективного необратимого дезагрегирования порошка натриетермического циркония, в силу того что он не обеспечивает возможность необратимого разрушения химической связи между полимеризованными частицами. Дисперсная система, состоящая из порошкообразного металла и дистиллированной воды, в виде которой осуществляется хранение порошка натриетермического циркония, относится к связнодисперсной в силу особенностей химических свойств порошкообразного циркония. Дело в том, что причины агрегации данного материала имеют не только физическую (вандерваальсовы силы притяжения частиц при столкновении частиц в результате броуновского движения, а также при осаждении под влиянием силы тяжести), но и химическую природу, заключающуюся в образовании мостиковых кислородных связей =Zr=O→Zr= между ультрадисперсными и наноразмерными частицами циркония. В процессе образования мостиковых связей =Zr=O→Zr= отдельные частицы срастаются друг с другом и получается полимерный скелет. При неограниченном росте такого скелета получается следующая полимерная цепь /3/:

Поэтому все самопроизвольные процессы межчастичных взаимодействий в такой системе протекают только в направлении агрегации и приводят к сокращению межфазной поверхности раздела, т.е. к агрегации частиц, и, в конечном счете, - к разделению системы на две фазы с минимальной поверхностью раздела. Указанное обстоятельство не позволяет использовать способы /6, 7/ для получения необратимо дезинтегрированного порошка натриетермического циркония и вызывает необходимость разработки дополнительных химических подходов к решению данной задачи.

Задача, решаемая предлагаемым изобретением, направлена на получение необратимо дезагрегированного порошка натриетермического циркония с сохранением или заданным изменением его свойств.

Техническим результатом изобретения является необратимое разрушение агрегатов частиц порошка натриетермического циркония и уменьшение их количества. Дополнительным техническим результатом является избирательное растворение мелкой фракции порошка натриетермического циркония и получение, таким образом, крупной фракции порошка циркония.

Для решения указанной задачи и достижения технического результата предлагается способ дезагрегирования порошка натриетермического циркония, характеризующийся тем, что осуществляют обработку агрегированного порошка путем перемешивания в среде с водородным показателем рН>7 с получением диспергированного порошка, который затем отмывают до нейтрального значения водородного показателя среды. При этом отмывку диспергированного порошка можно проводить водой или раствором с рН<7 при температуре 18-200°С, а затем водой.

Получение диспергированного порошка натриетермического циркония по заявляемому способу осуществляется за счет проведения механической или ультразвуковой обработки в щелочной среде с водородным показателем рН>7. В данных условиях среды протекает реакция щелочного гидролиза, приводящая к разрыву мостиковых связей =Zr=O→Zr= между частицами порошка с образованием на поверхности гидроксильных групп, и к разрушению полимерного скелета, являющегося причиной нахождения материала в обратимо агрегированном состоянии.

Таким образом, в предлагаемом способе полученная после обработки дисперсная система уже не обладает способностью к самопроизвольному восстановлению химически связанного состояния, т.е. не проявляется склонности к повторному (обратному) образованию агрегатов из индивидуальных частиц после диспергирования. Для удаления избыточной щелочи проводят промывку обработанного порошка, в частности промывку проводят дистиллированной водой до обеспечения нейтральной реакции среды.

Если избыточную щелочь нейтрализовать избытком кислоты, то обеспечивается избирательное растворение в среде с рН<7 мелкой фракции порошка циркония [4], что позволит получить крупную фракцию порошка циркония.

На фиг. 1 представлены электронно-микроскопические изображения исходного порошка натриетермического циркония при увеличениях 400× (а), 800× (б), 1600× (в), 3000× (г), 6000× (д), 12000× (е).

На фиг. 2 представлены электронно-микроскопические изображения порошка циркония, прошедшего щелочную обработку в условиях заявляемого способа при увеличениях 400× (а), 800× (б), 1600× (в), 3000× (г), 6000× (д), 12000× (е).

На фиг. 3 представлены электронно-микроскопические изображения порошка циркония, прошедшего щелочную обработку в условиях заявляемого способа (а, в, д), и порошка циркония, прошедшего последующую кислотную обработку в условиях заявляемого способа (б, г, е).

Решение задачи и достижение технических результатов предлагаемого изобретения реализовано в следующих примерах выполнения способа.

Пример 1. Комковидный агрегированный порошок натриетермического циркония m=3,50 г помещали в стеклянную круглодонную колбу, добавляли 20 мл дистиллированной воды и 5 мл NaOH 1М (рН=12). Перемешивание реакционной смеси осуществляли с помощью стеклянной мешалки со скоростью 200 об/мин в течение 1 часа. По истечении указанного времени реакционную смесь помещали на мембранный фильтр с диаметром пор 0,1 мкм и отмывали дистиллированной водой до нейтрального значения водородного показателя среды. Полученный порошок сушили при t=68°C в течение 15 часов.

Визуальные наблюдения за состоянием полученного порошка при хранении в дистиллированной воде в течение 50 суток свидетельствуют о сохранении свободнодисперсного состояния данной системы.

Пример 2. Агрегированный порошок натриетермического циркония m=3,5 г помещали в стеклянную круглодонную колбу, добавляли 20 мл дистиллированной воды и 5 мл NaOH 1М (рН=12). Перемешивание реакционной смеси осуществляли с помощью стеклянной мешалки со скоростью 200 об/мин в течение 1 часа. По истечении указанного времени к полученной реакционной смеси добавляли 20 мл раствора 1М HCl для нейтрализации присутствующей щелочи и создания среды с рН<7, необходимой для растворения мелкой фракции порошка циркония, после чего продолжали перемешивание еще в течение 1 часа в описанных выше условиях.

По окончании указанного промежутка времени смесь помещали на мембранный фильтр с диаметром пор 0,1 мкм и отмывали дистиллированной водой до нейтрального значения водородного показателя среды. Полученный порошок сушили при t=68°C в течение 15 часов.

Согласно результатам химического анализа в раствор перешло 2,42 мг из 3,5 г исходного порошка, что соответствует растворению 0,07% от исходной массы.

Электронно-микроскопические изображения, представленные на фиг. 2, указывают на диспергированное состояние порошка, прошедшего щелочную обработку в соответствии с описанием Примера 1, по сравнению с исходным порошком, находящимся в агрегированном (полимеризованном) состоянии, изображения которого представлены на фиг. 1. На фиг. 3 приведены электронно-микроскопические изображения порошков циркония после щелочной обработки (Пример 1) и после щелочной и кислотной обработки в соответствие с Примером 2, по которым видно, что количество мелкой фракции уменьшается.

Для доказательства необратимости дезагрегирования порошка циркония по сравнению с исходным материалом и исходным порошком, подвергнутым ультразвуковому измельчению, одинаковая навеска каждого сухого вещества была помещена в одинаковое количество дистиллированной воды в стандартных пробирках для центрифугирования и подвергнута интенсивному перемешиванию. После этого на центрифуге марки «Элекон М», работающей в режиме 1000 об/мин в течение 5 минут, а затем 2000 об/мин в течение 3 мин, произведено осаждение дисперсной фазы в полученных суспензиях. Избыточное количество воды отобрано пипеткой, а остаточное количество влаги составляло 25-28 мас. % от количества сухого вещества. После этого образцы были перемешаны с оставшимся количеством воды и оставлены на длительное (более трех месяцев) хранение. Образцы, подвергнутые химической обработке, сохранили свое дисперсное состояние, а образец порошка в исходном состоянии и после ультразвуковой обработки вернулись к исходному скомкованному состоянию, вызванному полимеризацией частиц.


СПОСОБ ДЕЗАГРЕГИРОВАНИЯ ПОРОШКА НАТРИЕТЕРМИЧЕСКОГО ЦИРКОНИЯ
СПОСОБ ДЕЗАГРЕГИРОВАНИЯ ПОРОШКА НАТРИЕТЕРМИЧЕСКОГО ЦИРКОНИЯ
СПОСОБ ДЕЗАГРЕГИРОВАНИЯ ПОРОШКА НАТРИЕТЕРМИЧЕСКОГО ЦИРКОНИЯ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 802.
25.08.2017
№217.015.d1e1

Способ визуализации оптических неоднородностей

Изобретение относится к области оптических измерений и касается способа визуализации оптических неоднородностей. Способ включает в себя регистрацию по крайней мере двух изображений фонового экрана при наличии оптической неоднородности в кадре. Структура экрана содержит множество мелких деталей...
Тип: Изобретение
Номер охранного документа: 0002621620
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d2b5

Уплотнение штока

Изобретение относится к области машиностроения, а именно к уплотнительной технике, и может быть применено в качестве уплотнительного устройства для уплотнения штока поршня. Уплотнение штока содержит упругие элементы, установленные на шток поршня. Для обдавливания упругих элементов предусмотрены...
Тип: Изобретение
Номер охранного документа: 0002621922
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d369

Двухконтурный газовый лазер и способ его эксплуатации

Изобретение относится к лазерной технике. Двухконтурный газовый лазер содержит лазерную камеру, внутри которой размещены полая кювета с окнами, прозрачными к оптическому излучению и снабженными затвором с датчиком положения и устройством охлаждения, управляемым блоком. Два контура циркуляции...
Тип: Изобретение
Номер охранного документа: 0002621616
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3cb

Твердотельный волновой гироскоп

Изобретение относится к области приборостроения, в частности к гироскопии, и может быть использовано в системах управления. Твердотельный волновой гироскоп содержит герметичный корпус, состоящий из кожуха и основания с выводами, во внутренней полости которого установлен центрирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002622238
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d3d5

Устройство для цифрового управления импульсным преобразователем

Изобретение относится к электротехнике, может быть использовано для управления преобразователями постоянного напряжения на входе в постоянное напряжение на выходе. Устройство для цифрового управления импульсным преобразователем содержит цифровой компаратор (1), задающий вход (2), импульсный...
Тип: Изобретение
Номер охранного документа: 0002622287
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d3fe

Квантрон твердотельного лазера с диодной накачкой

Изобретение относится к лазерной технике. Квантрон содержит активный элемент в виде стержня, источники оптической накачки, расположенные на держателях вокруг активного элемента, систему охлаждения активного элемента и источников оптической накачки, фланцы и элемент, соединяющий фланцы....
Тип: Изобретение
Номер охранного документа: 0002622237
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d405

Обратный клапан

Изобретение относится к запорной арматуре и предназначено для использования в пневматических системах высокого давления для предотвращения движения в обратном направлении рабочей среды. Обратный клапан содержит корпус с входным каналом, крышку с выходным каналом и проходные каналы, сообщенные с...
Тип: Изобретение
Номер охранного документа: 0002622145
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d6d7

Электронный предохранитель

Изобретение относится к устройствам защиты нагрузок и силовых цепей вторичных источников питания от перегрузок и коротких замыканий по току, от переполюсовки и превышения входного напряжения. Электронный предохранитель содержит транзистор NPN-типа, первый и второй транзисторы PNP-типа,...
Тип: Изобретение
Номер охранного документа: 0002622893
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d7af

Снарядоформирующий боеприпас с дистанционным действием

Снарядоформирующий боеприпас с дистанционным взрывателем относится к боеприпасам, предназначенным для пробития бронированных целей, для чего они транспортируются посредством носителя в область цели и выбрасываются там. Взрыватели таких боеприпасов оснащены датчиками цели, которые обеспечивают...
Тип: Изобретение
Номер охранного документа: 0002622565
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d7c5

Осколочный боеприпас с объемным полем поражения

Осколочный боеприпас с объемным полем поражения относится к боеприпасам осколочного действия, применяемым для оснащения боевых частей ракетных комплексов, и может быть использован в конструкциях боевых частей, предназначенных для поражения целей готовыми поражающим элементами (ГПЭ) с...
Тип: Изобретение
Номер охранного документа: 0002622562
Дата охранного документа: 16.06.2017
Показаны записи 191-200 из 295.
25.08.2017
№217.015.d1e1

Способ визуализации оптических неоднородностей

Изобретение относится к области оптических измерений и касается способа визуализации оптических неоднородностей. Способ включает в себя регистрацию по крайней мере двух изображений фонового экрана при наличии оптической неоднородности в кадре. Структура экрана содержит множество мелких деталей...
Тип: Изобретение
Номер охранного документа: 0002621620
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d2b5

Уплотнение штока

Изобретение относится к области машиностроения, а именно к уплотнительной технике, и может быть применено в качестве уплотнительного устройства для уплотнения штока поршня. Уплотнение штока содержит упругие элементы, установленные на шток поршня. Для обдавливания упругих элементов предусмотрены...
Тип: Изобретение
Номер охранного документа: 0002621922
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d369

Двухконтурный газовый лазер и способ его эксплуатации

Изобретение относится к лазерной технике. Двухконтурный газовый лазер содержит лазерную камеру, внутри которой размещены полая кювета с окнами, прозрачными к оптическому излучению и снабженными затвором с датчиком положения и устройством охлаждения, управляемым блоком. Два контура циркуляции...
Тип: Изобретение
Номер охранного документа: 0002621616
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3cb

Твердотельный волновой гироскоп

Изобретение относится к области приборостроения, в частности к гироскопии, и может быть использовано в системах управления. Твердотельный волновой гироскоп содержит герметичный корпус, состоящий из кожуха и основания с выводами, во внутренней полости которого установлен центрирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002622238
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d3d5

Устройство для цифрового управления импульсным преобразователем

Изобретение относится к электротехнике, может быть использовано для управления преобразователями постоянного напряжения на входе в постоянное напряжение на выходе. Устройство для цифрового управления импульсным преобразователем содержит цифровой компаратор (1), задающий вход (2), импульсный...
Тип: Изобретение
Номер охранного документа: 0002622287
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d3fe

Квантрон твердотельного лазера с диодной накачкой

Изобретение относится к лазерной технике. Квантрон содержит активный элемент в виде стержня, источники оптической накачки, расположенные на держателях вокруг активного элемента, систему охлаждения активного элемента и источников оптической накачки, фланцы и элемент, соединяющий фланцы....
Тип: Изобретение
Номер охранного документа: 0002622237
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d405

Обратный клапан

Изобретение относится к запорной арматуре и предназначено для использования в пневматических системах высокого давления для предотвращения движения в обратном направлении рабочей среды. Обратный клапан содержит корпус с входным каналом, крышку с выходным каналом и проходные каналы, сообщенные с...
Тип: Изобретение
Номер охранного документа: 0002622145
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d6d7

Электронный предохранитель

Изобретение относится к устройствам защиты нагрузок и силовых цепей вторичных источников питания от перегрузок и коротких замыканий по току, от переполюсовки и превышения входного напряжения. Электронный предохранитель содержит транзистор NPN-типа, первый и второй транзисторы PNP-типа,...
Тип: Изобретение
Номер охранного документа: 0002622893
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d7af

Снарядоформирующий боеприпас с дистанционным действием

Снарядоформирующий боеприпас с дистанционным взрывателем относится к боеприпасам, предназначенным для пробития бронированных целей, для чего они транспортируются посредством носителя в область цели и выбрасываются там. Взрыватели таких боеприпасов оснащены датчиками цели, которые обеспечивают...
Тип: Изобретение
Номер охранного документа: 0002622565
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d7c5

Осколочный боеприпас с объемным полем поражения

Осколочный боеприпас с объемным полем поражения относится к боеприпасам осколочного действия, применяемым для оснащения боевых частей ракетных комплексов, и может быть использован в конструкциях боевых частей, предназначенных для поражения целей готовыми поражающим элементами (ГПЭ) с...
Тип: Изобретение
Номер охранного документа: 0002622562
Дата охранного документа: 16.06.2017
+ добавить свой РИД