×
20.01.2018
218.016.1153

Результат интеллектуальной деятельности: СПОСОБ ВСТРЕЧНОГО РАЗГОНА И СТОЛКНОВЕНИЯ НЕЙТРАЛЬНЫХ МИКРОЧАСТИЦ

Вид РИД

Изобретение

№ охранного документа
0002633964
Дата охранного документа
20.10.2017
Аннотация: Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение микрочастиц будет формироваться двумя силами. Первая сила образуется за счет шнекового эффекта, при котором частицы, оказавшиеся в пазах, будут двигаться вдоль пазов. Вторая сила образуется за счет того, что частицы благодаря центробежным силам попадают в зазор между зубцами ротора и статора в зоны взаимного пересечения зубцов. Площадь зазора между зубцами статора и ротора определяется в зависимости от угла взаимного пересечения зубцов статора и ротора. Максимальные размеры этой площади, на входе в ускорители. Техническим результатом является снижение расхода материала, повышение КПД установок для встречного разгона и снижение их габаритов. 3. з.п. ф-лы, 4 ил.

Заявленное изобретение относится к сспособам встречного разгона микрочастиц и может найти применение в качестве ускорителя для встречного столкновения, например молекул или атомов, лишенных заряда при получения химических реакций.

Известен способ ускорения микрочастиц, описанный в патенте RU 2327877 С2, 20.08.2003, который принципиально может быть использован для встречного разгона микрочастиц.

Недостаток известного способа разгона и столкновения заключается в том, что разгоняемые частицы распределены по большой поверхности пространства, что снижает вероятность их столкновения.

Наиболее близким к предлагаемому способу встречного разгона микрочастиц, по мнению авторов, и принятым за прототип является способ ускорения, описанный в патенте RU 2572520 C1, 20.01.2016, который может быть использован как составная часть ускорителя встречных микрочастиц.

В известном ускорителе ускорение микрочастиц происходит за счет взаимодействия частиц с выступающими винтовыми зубцами ротора и статора с расходящимися от входного отверстия к выходному шагом.

Его недостаток состоит в том, что скорость частиц на выходе ускорителя невелика, что в некоторых случаях может не соответствовать условию протекания химических реакций.

Задачей данного изобретения является создание простых и удобных для применения в различных областях ускорителей, способных обеспечить высокую суммарную скорость нейтральных микрочастиц, например молекул или атомов с высокой концентрацией, достаточной для протекания химических реакций.

Техническим результатом является возможность повышения вероятности слияния участвующих в процессе столкновения микрочастиц и образования новых химических веществ при встречном их соударении.

Технический результат достигается за счет того, что в способе встречного разгона и столкновения нейтральных микрочастиц согласно изобретению разгон микрочастиц на встречном направлении производится путем взаимодействия микрочастиц с выступающими поверхностями винтовых зубцов вращающегося ротора с расходящимся от входа к выходу ускорителей шагом и зубцами неподвижного статора с уменьшением площади пересекающихся поверхностей зубцов по мере расхождения упомянутого винтового шага, при котором микрочастицы фокусируют на выходе каждого из ускорителей путем их концентрации за счет уменьшения диаметра ротора и статора по мере перемещения частиц от входа в ускорители к их выходу.

Технический результат может быть достигнут и за счет того, что начало реакции в реакторе управляется микроконтроллером и контролируется датчиками температуры.

Реагулировать процесс реакции можно с помощью редукционных клапанов.

Скорость реакции и, соответственно, процесс образования нового вещества можно регулировать путем изменения числа оборотов ротора.

Управление начала реакции в реакторе с помощью микроконтроллера и контроль ее датчиками температуры позволит полностью вести весь процесс получения результирующего продукта.

Реагирование процесса реакции с помощью редукционных клапанов обеспечит простоту контроля.

Регулирование скорости реакции и, соответственно, процесса образования нового вещества путем изменения числа оборотов ротора, способствует обеспечению простоты контроля за ходом реакции.

Изобретение иллюстрируется фиг. 1-4.

На фиг. 1 изображен поперечный разрез ротора ускорителя.

На фиг. 2 нарисован продольный разрез статора.

На фиг. 3 показан продольный разрез статора и ротора в сборе.

На фиг. 4 представлен ускоритель с реактором-регистратором процесса химической реакции.

Устройство, обеспечивающее указанный способ встречного разгона нейтральных микрочастиц, устроено следующим образом. Ротор 1 (фиг. 1) ускорителя выполнен в виде двух половин однополосного гиперболоида вращения 2 и 3. Половины гиперболоидов 2 и 3 направлены горловинами к его центру и соединены между собой общим валом 4. На поверхности ротора выполнены выступающие зубцы 7. Зубцы 7 ротора 1 в продольном направлении расположены по винтовой линии в виде шнека или винта с переменным шагом, расходящимся от концов ротора, к его середине. Шаг винтов ротора при подходе к его середине приближается к бесконечности. (На фиг. 1 показан только один виток). Конструкция предусматривает многозаходный винт. Количество зубцов может достигать двузначного или даже трехзначного числа и зависит от размера машины.

Ширина зубцов в местах их взаимного противостояния в каждом поперечном сечении определяется из соотношения [1]:

где bi - ширина зубца в i-м сечении, bз - ширина зубца в основании (расширенной части) ротора, di - диаметр ротора в i-м сечении, D - диаметр ротора в его основании (расширенной части), αi - угол наклона винтовой линии по отношению к линии, проходящей параллельно оси симметрии ротора, или угол пересечения между зубцами статора и ротора в i-м сечении. Ротор с двух сторон (с двух его концов) снабжен приводными валами 5 и 6.

Статор ускорителей состоит из двух цилиндрических труб 8 и 9 (фиг. 2), изготовленных преимущественно из металла и расположенных на одной оси, внутри которых выполнены сквозные продольные пустоты, по форме совпадающие с ротором (не обозначены) для установки ротора. Внутренняя поверхность статора содержит продольные зубцы 10. Эти зубцы расположены в плоскостях, проходящих через ось симметрии ускорителей, и продолжаются вдоль всей его внутренней поверхности. Число зубцов статора равно числу зубцов ротора. Ширина зубцов в местах их взаимного противостояния в каждом поперечном сечении определяется из того же соотношения, что и ширина зубцов ротора. Шаг винта Р приближается к Р=V/n, где n - число оборотов вала ротора в секундах, V - скорость движения микрочастицы.

В свою очередь, устройство для встречного разгона (УВР) состоит из двух ускорителей 11, 12 (фиг. 3). Каждый из ускорителей представляет собой половину ротора в виде гиперболоида со своим статором. Так, ускоритель 11 содержит половину 2 ротора 1 и статор 13. Ускоритель 12 содержит половину 3 ротора 1 и статор 14. Ускорители направлены суженной стороной (горловинами гиперболоидов) навстречу друг другу. Ротор 1 установлен с возможностью вращения коаксиально с минимальным зазором внутри статора 13, 14. Оба ускорителя заключены в общую станину 15, в которой имеются окна 16 для установки исследовательской аппаратуры (не указана). Станина неподвижна и может содержать лапы, наподобие лап электрических машин для ее крепления к поверхности. С двух сторон УВРа прикреплены щиты 17, в которых выполнены окна 18 для подачи испытуемого материала, в качестве которого может быть жидкость или газ. Между ротором 1 и станиной 15 расположены подшипники качения 19 и 20, связывающие валы ротора соответственно 5 и 6.

В варианте конструкции, иллюстрирующей данный способ, вал ротора 7 имеет механическую связь с внешним приводом (на фиг 4. не показан). В системе имеется регулятор частоты вращения 21 электропривода. Сквозные окна 16 связаны шлангом 22 с реактором 23, в котором происходит анализ результатов реакции реагентов с последующей его утилизацией. Реактор 23 снабжен датчиком температуры и давления. Если реакция экзотермическая, то производится отбор тепловой энергии с последующей ее утилизацией через канал 24. Если реакция эндотермическая, в реактор подается тепло, например горячий воздух. Отработавшие в реакторе 23 продукты через шланг 25 поступают в фильтровальную камеру 26. Фильтровальная камера снабжена отводным шлангом с ручным клапаном, необходимым для вывода отстоя (не обозначен). После фильтровальной камеры очищенные от отходов продукты поступают через шланг 27 в вакуумный насос 28 и после насоса подаются в пополняемую расходную емкость 29. В свою очередь, расходная емкость 29 двумя шлангами 30 и 31 соединена со сквозными отверстиями станины 18, расположенными с левой и с правой ее сторон. В шланге 30 имеется электроуправляемый редукционный клапан 32. В шланге 31 имеется электроуправляемый редукционный клапан 33. Шланги снабжены также датчиками давления соответственно 34 и 35. Система управления сосредоточена в контроллере 36, в который поступают сигналы от датчиков давления 34 и 35. В контроллер 36 также поступают сигналы о температуре в реакторе 23.

Способ встречного разгона и столкновения нейтральных микрочастиц действует следующим образом. При вращении ротора 1 внутри неподвижного статора 8, 10 (фиг. 3, 4) используемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. Локальные зазоры, сформированные между зубцами статора и ротора, будут линейно и непрерывно с ускорением смещаться в сторону от концов статора и ротора к центру УВРа в суженной его части. При этом движение микрочастиц будет формироваться двумя силами. Первая сила образуется за счет шнекового эффекта, при котором частицы, оказавшиеся в пазах, будут двигаться вдоль пазов. Вторая сила образуется за счет того, что частицы благодаря центробежным силам попадают в зазор между зубцами ротора и статора в зоны взаимного пересечения зубцов и оказываются в гравитационной ловушке. Иными словами, микрочастицы образцов, попадающие в зазор между зубцами, взаимодействуют с зубцами по принципу взаимного притяжения согласно формуле

где m1 - массы микрочастиц исследуемого материала и m2 - массы ротора и статора, которые взаимодействуют с частицами с силой Fi; R - расстояние между массами зубцов ротора и статора и микрочастицами; Y1=6,67384(80)⋅10-11 м3⋅с-2⋅кг-1 или Н⋅м2⋅кг-2. универсальная постоянная. Что касается расстояния R, то в предлагаемом ускорителе эта величина неопределенна, поскольку элементы материала находятся во взаимодействии с двумя движущимися параллельно массами, расположенными с двух сторон от микрочастиц, и это расстояние на практике может приближаться к нулю. Во всяком случае, R в сотни и тысячи раз меньше, чем если бы взаимодействие было односторонним.

Площадь зазора между зубцами статора и ротора зависит от угла «α» взаимного пересечения зубцов статора и ротора и диаметра ротора согласно формуле [1]. Максимальные размеры этой площади, на входе в ускорители, где она равна bз2 при α=90°. По мере перемещения микрочастиц эта площадь постоянно снижается, что приводит к увеличению их концентрации на выходе ускорителей, и будет иметь вид ромба.

Если шаг Р винтовых пазов статора и ротора на выходе приближен к Р=V/n, где n - число оборотов вала ротора в секундах, V - скорость движения микрочастицы, то скорость истечения микрочастиц будет соразмерна с релятивистской скоростью, при этом масса частиц будет определяться согласно формуле

где m0 - масса частиц на входе в ускоритель, m - масса ускоренной частицы, V - скорость ускоренной частицы, с - скорость света.

Согласно формуле [3] взаимодействие между частицами и зубцами ротора и статора по мере их ускорения и приближения в выходным отверстиям ускорителей будет увеличиваться. При этом концентрации микрочастиц будет возрастать и в соответствии с уменьшением диаметра ротора. По мере приближения микрочастиц к суженной части, концентрация λ микрочастиц будет дополнительно увеличиваться обратно пропорционально соотношению квадратов диаметров d на выходе ускорителей к диаметру D их на входе в соответствии с формулой 4

При этом сама скорость вращения ротора может быть относительно невелика, что позволит снизить шум и вибрацию. Выявлять появление новых частиц можно с помощью регистрирующей аппаратуры в ускорителе, избраженном на фиг. 4.

Вероятность столкновения частиц зависит от площади поверхности, плотности потока частиц, участвующих в актах взаимодействия в единицу времени и скорости столкновения. В данном изобретении площадь поверхности в месте столкновения с учетом снижения внешней поверхности зубцов приближается к минимальному значению, а плотность потока частиц регулируется с помощью редукционных клапанов. Для реагирования на процесс столкновения микрочастиц и предусмотрена схема с реактором - регистратором столкновений (фиг. 4). Процесс начала реакции при столкновении контролируется датчиками температуры и управляется контроллером 36. Подвод или отвод тепла осуществляется по показания датчиков температуры. Контроллер 36 воздействует на клапаны 31 и 33 и регулятор частоты вращения 21. Прореагировавшие продукты с помощью вакуумного насоса 20 перекачиваются в расходную емкость 29, в которой смешиваются с исходным продуктом. Затем по шлангам 30 и 31 исходный продукт поступает в отверстия 18 для повторного реагирования. Контроллер 36 позволяет регулировать процесс столкновения на определенном уровне, получая сигналы от датчиков температуры охладителя, скорости вращения ротора и датчиков давления 34 и 35.

Скорость V и соответственно скорость реакции можно регулировать путем изменения числа оборотов ротора. При этом сама скорость вращения ротора может быть относительно невелика, что позволит снизить шум и вибрацию. Превращение и сохранение энергии при химических реакциях в качестве примера можно записать так: 2H2O=2H2+O2 - 572кДж - 483,6 кДж на один моль O2 (реакция экзотермическая); N22=2NO-Q(+ΔQ) (реакция эндотермическая).

В химических реакциях соединения хотя бы два элемента образуют один продукт и инициируется активными частицами реагентов. Как показали расчеты, число соударений между частицами, находящимися в газовых и жидких средах за единицу времени, всегда достаточно велико. Так, в 1 см3 газа за одну секунду происходит ~1⋅1028 столкновений между молекулами. Если бы каждое из них приводило к образованию конечных продуктов, то подавляющее большинство химических реакций протекали бы практически мгновенно. На практике этого не наблюдается, т.к. не все соударения между молекулами исходных веществ являются «успешными». Установлено, что для многих реакций число таких «успешных» соударений ~ в 1015-1020 раз меньше, чем общее число соударений. Протекание реакции становится возможным только в том случае, если столкнувшиеся молекулы обладают достаточным запасом внутренней энергии. Если ее значение равно какой-то определенной величине или больше ее, то реакция осуществится. Такие молекулы называются активными, а соударения между ними эффективными. Обычно доля активных молекул реагентов по сравнению с их общим числом для большинства реакций невелика. Поэтому если удастся увеличить число активных элементов, участвующих в реакции, то это приведет к ускорению процесса, т.е. повысить эффективность. Данное изобретение позволяет увеличить число активных молекул и резко повысить эффективность химической реакции.


СПОСОБ ВСТРЕЧНОГО РАЗГОНА И СТОЛКНОВЕНИЯ НЕЙТРАЛЬНЫХ МИКРОЧАСТИЦ
СПОСОБ ВСТРЕЧНОГО РАЗГОНА И СТОЛКНОВЕНИЯ НЕЙТРАЛЬНЫХ МИКРОЧАСТИЦ
СПОСОБ ВСТРЕЧНОГО РАЗГОНА И СТОЛКНОВЕНИЯ НЕЙТРАЛЬНЫХ МИКРОЧАСТИЦ
СПОСОБ ВСТРЕЧНОГО РАЗГОНА И СТОЛКНОВЕНИЯ НЕЙТРАЛЬНЫХ МИКРОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 281.
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d0f

Способ измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656016
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d10

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656023
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d15

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656012
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5edf

Способ и система выполнения распределенных операций счета и суммирования чисел с применением аналого-цифровых преобразователей уровня оптических сигналов

Изобретение относится к средствам выполнения поиска и обработки информации. Технический результат заключается в повышении скорости распределенных операций счета и суммирования чисел в компьютерных кластерах. Способ выполнения распределенных операций счета и суммирования чисел характеризуется...
Тип: Изобретение
Номер охранного документа: 0002656738
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f03

Способ организации взаимодействия клиента с сервером приложений с использованием сервис-браузера

Изобретение относится к вычислительной технике, в частности к средствам обмена данными между клиентом и сервером. Техническим результатом предложения является повышение скорости обработки информации при функционировании в защищенной среде. Способ организации взаимодействия клиента по крайней...
Тип: Изобретение
Номер охранного документа: 0002656735
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f43

Способ и система выполнения распределенного аналого-цифрового суммирования и управления его выполнением

Группа изобретений относится к области вычислительной техники и может быть использована в устройствах, выполняющих операции суммирования сигналов, одновременно генерируемых многими источниками. Техническим результатом является повышение скорости распределенных операций суммирования чисел в...
Тип: Изобретение
Номер охранного документа: 0002656741
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.60eb

Способ внутрипластового горения

Изобретение относится к способу извлечения смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения. Способ внутрипластового горения заключается в том, что в нефтяном пласте выполняют ряд вертикальных нагнетательных скважин, достигающих пластового резервуара, выполняют...
Тип: Изобретение
Номер охранного документа: 0002657036
Дата охранного документа: 08.06.2018
20.06.2018
№218.016.64b1

Способ измерения параметров движения объекта и система для его осуществления

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих угловых и линейных ускорений объекта. Способ измерений параметров движения объекта с инерциальной измерительной системой, характеризующийся расположением 9...
Тип: Изобретение
Номер охранного документа: 0002658124
Дата охранного документа: 19.06.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
Показаны записи 191-200 из 202.
19.04.2019
№219.017.3208

Устройство защиты электроустановок от перегрева

Изобретение относится к электротехнике, а именно к устройствам защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия. Технический результат - обеспечение защиты различных потребителей электроэнергии от...
Тип: Изобретение
Номер охранного документа: 0002456730
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.320d

Способ защиты электроустановок от перегрева

Изобретение относится к электротехнике, а именно к способам защиты потребителей электроэнергии от тепловой перегрузки. Технический результат - обеспечение защиты потребителей электроэнергии от тепловой перегрузки без разрыва контактов в цепи управления В устройстве, демонстрирующем предложенный...
Тип: Изобретение
Номер охранного документа: 0002456731
Дата охранного документа: 20.07.2012
29.04.2019
№219.017.42ae

Способ передачи электрической энергии в трехфазной системе на расстояние

Использование: в электроэнергетике для передачи больших потоков энергии на большие расстояния. Технический результат заключается в повышении КПД передачи и уменьшении полосы отчуждения. В начале линии в цепи фазы А формируют линию задержки со сдвигом сигнала во времени, равным 2/3f, в начале...
Тип: Изобретение
Номер охранного документа: 0002307438
Дата охранного документа: 27.09.2007
29.04.2019
№219.017.44bb

Гидравлический вариатор с высоким передаточным числом

Изобретение относится к объемным гидравлическим передачам вращательного движения и может быть использовано, в частности, в коробках перемены передач в транспортных системах. Гидравлический вариатор состоит из гидронасоса и гидродвигателя. Гидронасос имеет всасывающий (1) и нагнетательный (2)...
Тип: Изобретение
Номер охранного документа: 0002451851
Дата охранного документа: 27.05.2012
20.05.2019
№219.017.5d34

Привязной аэростат

Изобретение относится к области летно-подъемных радиотехнических средств. Привязной аэростат содержит двояковыпуклую оболочку 1 с легким газом, контейнер 11 с аппаратурой, тросовой разводкой 12 и ветропривод с электрическим генератором, питающим аппаратуру в контейнере. Привязной аэростат...
Тип: Изобретение
Номер охранного документа: 0002688115
Дата охранного документа: 17.05.2019
09.06.2019
№219.017.79eb

Способ извлечения пакера

Изобретение относится к нефтегазодобывающей промышленности, а именно к извлечению эксплуатационных пакеров из газовых и газоконденсатных скважин со сложным многопрофильным стволом, в том числе и с наклонно-направленным. Способ включает спуск во внутреннюю полость лифтовой колонны инструмента...
Тип: Изобретение
Номер охранного документа: 0002311523
Дата охранного документа: 27.11.2007
29.06.2019
№219.017.9f64

Способ образования волн движущих сил в колесном транспортном средстве и универсальный колесный вездеход, его реализующий

Изобретения относятся к способу образования волн движущих сил в колесном транспортном средстве и к универсальному колесному вездеходу. Способ заключается в формировании не менее четырех колесных пар, последовательно расположенных на расстоянии L друг от друга. Волны движущих сил образуют путем...
Тип: Изобретение
Номер охранного документа: 0002425774
Дата охранного документа: 10.08.2011
10.07.2019
№219.017.ad00

Устройство для преобразования тепловой энергии в электрическую энергию

Устройство предназначено для прямого преобразования тепловой энергии в электрическую энергию. Устройство содержит генератор электрической энергии и нагреваемые элементы, выполненные из магнитно-мягкого материала с пониженной точкой Кюри и являющиеся составной частью Ф-образной магнитной цепи,...
Тип: Изобретение
Номер охранного документа: 0002382479
Дата охранного документа: 20.02.2010
10.07.2019
№219.017.af9c

Индукторный генератор с торцевым возбуждением

Изобретение относится к области электротехники, а именно к индукторным генераторам, и может быть использовано для выработки электрической энергии при вращении ротора, в частности для получения постоянного, однофазного и трехфазного переменного тока нормальной и повышенной частоты. Технический...
Тип: Изобретение
Номер охранного документа: 0002454775
Дата охранного документа: 27.06.2012
13.07.2019
№219.017.b3e5

Способ преобразования кинетической энергии ветра

Изобретение относится к области энергетики и касается преобразования энергии ветра в другие виды энергии. Способ преобразования кинетической энергии ветра, воздействующего на привязной летающий аппарат, с передачей механической мощности на рабочий орган, расположенный на земле, заключается в...
Тип: Изобретение
Номер охранного документа: 0002379545
Дата охранного документа: 20.01.2010
+ добавить свой РИД