×
20.01.2018
218.016.1077

Результат интеллектуальной деятельности: Способ лазерного отжига неметаллических материалов

Вид РИД

Изобретение

№ охранного документа
0002633860
Дата охранного документа
18.10.2017
Аннотация: Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для отжига полупроводниковых, керамических и стеклообразных материалов. Осуществляют облучение поверхности лазерным импульсом прямоугольной формы с требуемой плотностью энергии. Исходный лазерный импульс делят на два импульса равной мощности с помощью диэлектрического зеркала с коэффициентом отражения 50% и осуществляют временную задержку второго импульса на время действия первого импульса. Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала. 3 ил.

Изобретение относится к технологическим процессам и может быть использовано для лазерного отжига полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемых для аморфизации кремния и заключающийся в облучении их импульсом лазерного излучения [Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов VIII Всероссийской конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 24].

Известен также способ [Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов VIII Всероссийской конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 29].

Недостатком указанных способов является то, что возникающие в материалах термоупругие напряжения могут привести к откольному разрушению материала со стороны облучаемой поверхности.

Известен также способ лазерной обработки неметаллических материалов, заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением

где q(t) - плотность потока энергии лазерного излучения, Вт/м2;

τ - длительность импульса лазерного излучения, с;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса;

t - текущее время от начала воздействия, с. [Патент на изобретение RU 2211753 С2, МПК B23K 26/00, 10.09.2003]. Лазерный импульс, описываемый уравнением (1), создает минимальные термоупругие напряжения в поглощающем слое материала. Недостатком аналога является то, что указанный лазерный импульс формируется при реализации схемы задающий генератор - многокаскадный усилитель. Задающий генератор должен работать в режиме модулированной добротности. Причем последний каскад усилителя должен работать в режиме, близком к насыщению. Такой режим работы неблагоприятно сказывается на долговечности активной среды твердотельных лазеров. Как правило, ресурс активных стержней последнего каскада усилителя ограничивается несколькими сотнями выстрелов. Кроме того, подобные установки не выпускаются промышленностью, требуется их специальное проектирование и штучное изготовление. Промышленно выпускаемые твердотельные лазеры, работающие в режиме модулированной добротности, имеют колоколообразную форму импульса, близкую к полуволне синусоиды, когда для модуляции добротности лазера применяют электрооптические или пассивные модуляторы добротности, или близкую к прямоугольной, когда для модуляции добротности применяют акустооптические затворы [Макогон М.М., Неделькин Н.В., Сердюков В. И., Тарасов В.М. Лазеры на гранате с модуляцией добротности кристаллами . Оптика атмосферы и океана. 1996 г. Том 9, №2, с. 239-242.]. Длительность импульса лазерного излучения при пассивной модуляции добротности или при применении электрооптических затворов составляет 10-50 нс, при применении акустооптических затворов - 100-150 нс и даже до 300 нс [Мюллер С. Лазеры с модуляцией добротности для обработки поверхностей. Фотоника. 2011. - №2. - С. 26-28]. Применение лазеров с акустооптическими затворами для отжига неметаллических материалов является предпочтительнее, так как эти лазеры имеют большую длительность импульса, что способствует уменьшению термоупругих напряжений.

Известен также способ обработки неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом с плотностью энергии, определяемой по уравнению

где Tf - температура отжига;

Т0 - начальная температура;

с и ρ - удельная теплоемкость и плотность материала соответственно;

R - коэффициент отражения материала;

χ - показатель поглощения материала на длине волны лазерного излучения [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. 1982. - №6. - с. 92-98.]. Данное решение принято в качестве прототипа.

Недостатком прототипа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала.

Технический результат достигается тем, что в способе лазерного отжига неметаллических материалов, заключающемся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению

,

где Tf - температура отжига;

Т0 - начальная температура;

с и ρ - удельная теплоемкость и плотность материала соответственно;

R - коэффициент отражения материала;

χ - показатель поглощения материала на длине волны лазерного излучения,

диэлектрическим зеркалом с коэффициентом отражения 50% исходный лазерный импульс делят на два импульса равной мощности и осуществляют временную задержку второго импульса на время действия первого импульса.

Ниже приводится более подробное описание способа лазерного отжига неметаллических материалов со ссылкой на фиг. 1 - фиг. 3. На фиг. 1 представлена установка для лазерной обработки, позволяющая реализовать заявленный способ: 1 - лазер с модулятором добротности на основе акустооптического затвора, 2 - диэлектрическое зеркало с коэффициентом отражения 50%, 3 - диэлектрическое зеркало с коэффициентом отражения 99,9%, 4 - обрабатываемый материал, 5 и 6 - фокусирующие линзы, создающие на поверхности обрабатываемого материала 4 требуемую плотность энергии. Диэлектрическим зеркалом 2 лазерный импульс делится на два импульса одинаковой плотности мощности. Прошедший через зеркало 2 первый импульс линзой 5 фокусируется на поверхность обрабатываемого материала 4 в пятно требуемого диаметра. Отраженный зеркалом 2 второй импульс направляют на диэлектрическое зеркало 3 с коэффициентом отражения 99,9%, которое совмещает отраженный импульс на поверхности обрабатываемого материала 4 с импульсом, прошедшим через зеркало 2. Линзой 6 второй импульс фокусируется в пятно требуемого диаметра. Разница длин путей первого и второго лазерных импульсов обеспечивает задержку второго импульса на время воздействия первого импульса на поверхность обрабатываемого материала.

Сравним воздействие на поверхность обрабатываемого материала двух лазерных импульсов равной плотности энергии. Плотность мощности лазерного излучения в одиночном импульсе составляет q Вт/см2, длительность первого импульса - τ с. Сдвоенный лазерный импульс, получаемый посредством суммирования по поверхности обрабатываемого материала двух лазерных импульсов, получаемых при помощи описанной выше установки, будет иметь следующие параметры: плотность мощности q/2 Вт/см2, длительность импульса - 2 τ с.

В соответствии с прототипом [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. 1982. - №6. - С. 92-98.], максимальные растягивающие напряжения в поглощающем слое материала составят:

для одиночного лазерного импульса:

где σm1 - максимальные растягивающие напряжения в поглощающем слое материала при воздействии одиночного лазерного импульса с плотностью мощности q и длительностью τ;

K - модуль всестороннего сжатия;

α - коэффициент линейного расширения материала;

е - основание натурального логарифма;

χ - показатель поглощения материала на длине волны лазерного излучения;

x - координата, отсчитываемая от поверхности материала вглубь;

с0 - скорость звука в материале,

для сдвоенного лазерного импульса:

где σm2 - максимальные растягивающие напряжения в поглощающем слое материала при воздействии сдвоенного лазерного импульса с плотностью мощности q/2 и длительностью 2τ.

Плотность энергии лазерного излучения на обрабатываемой поверхности при этом будет одинаковой W=q⋅τ=(q/2)⋅2τ=q⋅τ.

Разделив (4) на (3) и проведя математические преобразования, получим

На фиг. 2 показан график зависимости , построенный по соотношению (5). Видно, что отношение . Причем по мере возрастания параметра χс0τ отношение уменьшается.

Из уравнений (3) и (4) определим плотность энергии лазерного излучения, вызывающую откольное разрушение материала со стороны облучаемой поверхности для воздействия соответственно одиночного и сдвоенного лазерных импульсов:

где σР - предел прочности материала на разрыв.

Уравнения (6) и (7) получены для минимальных значений плотностей энергии, когда е-2χх≈0.

Плотность энергии лазерного излучения, необходимую для достижения поверхностью материала температуры отжига, определяют по уравнению (2). Разделив (6) и (7) соответственно на (2), получим:

Поставив условие и , после математических преобразований получим:

Проведем анализ неравенств (10) и (11). Левая часть неравенств является характеристикой материала, показывающей отношение предела прочности материала на разрыв к максимальным растягивающим напряжениям, возникающим при импульсном нагреве материала до температуры отжига. Правые части неравенств (10) и (11) являются функциями безразмерного параметра χс0τ. Если неравенства (10) и (11) выполняются, то возможен лазерный отжиг материала. В противном случае произойдет откольное разрушение материала. Анализ неравенств (10) и (11) необходимо проводить для конкретных материалов. Например, для стекла СЗС-21, у которого K=4⋅-1010 Па, α=8,6-10-6 K-1, σР=6⋅107 Па, Tf=700 K, Т0=300 K, левая часть неравенств (10) и (11) равна 0,29. Показатель поглощения стекла СЗС-21 на длине волны 1,06 мкм составляет 22,4 см-1, скорость звука в материале - 5,7⋅103 м/с.

На фиг. 3 показано графическое решение неравенств (10) и (11) для цветного оптического стекла СЗС-21. Видно, что при воздействии одиночного лазерного импульса Неравенство (10) выполняется при χс0τ≥3,3, что соответствует длительности лазерного импульса τ≥2,6⋅10-7 с. Неравенство (11) выполняется при χс0τ≥1,7, что соответствует длительности лазерного импульса τ≥1,33⋅10-7 с.

Таким образом, разделение исходного лазерного импульса на два импульса равной мощности и временная задержка второго импульса на время действия первого импульса позволяет уменьшить максимальные растягивающие напряжения в поглощающем слое материала и область изменения безразмерного параметра χс0τ, в которой возможно откольное разрушение материала, почти в два раза, что позволит увеличить выход годной продукции при лазерном отжиге неметаллических материалов.

Пример реализации способа

Необходимо произвести лазерный отжиг поверхности оптического цветного стекла СЗС-21 импульсным лазером с длиной волны 1,06 мкм и длительностью импульса 140 не. Требуемая плотность энергии на поверхности материала составляет 36,9 Дж/см2. Расчет проведен при с=0,76⋅103 Дж/(кг⋅K) и ρ=2,5⋅103 кг/м3 по уравнению (2). При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности составит 30,1 Дж/см2. Следовательно, лазерный отжиг не возможен, так как произойдет разрушение материала. Расчеты проведены по уравнению (6). Для осуществления лазерного отжига при помощи диэлектрического зеркала 2 (см. фиг. 1) с коэффициентом отражения 50% осуществляют разделение лазерного импульса на два импульса одинаковой мощности. Первый импульс воздействует на поверхность материала. Зеркалом 3 отраженный импульс направляется на поверхность обрабатываемого материала и совмещается с площадью первого импульса. Второй импульс должен пройти путь на 42 м больше, чем первый импульс для задержки на 140 нс. После прохождения дополнительного пути второй импульс воздействует на поверхность материала.

Таким образом, осуществляется воздействие сдвоенным лазерным импульсом, плотность мощности в котором будет в два раза ниже, а длительность в два раза больше, чем при воздействии одиночного импульса. При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности составляет 40,3 Дж/см2. Следовательно, можно осуществлять лазерный отжиг материала. Расчеты проведены по уравнению 7. Как правило, лазеры с модуляцией добротности акустооптическими затворами работают в частотном режиме. Частота повторения импульсов составляет 1-8 кГц. Это позволяет производить лазерный отжиг поверхностей большой площади за счет перемещения заготовки после каждого импульса на требуемое расстояние.


Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Источник поступления информации: Роспатент

Показаны записи 181-190 из 191.
09.06.2019
№219.017.79c1

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к тензорезистивным датчикам давления, и предназначено для измерения разности давления жидкости и газов. Техническим результатом изобретения является повышение стабильности датчика разности давлений. Датчик разности давления содержит...
Тип: Изобретение
Номер охранного документа: 0002395793
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7f6f

Генератор меченых нейтронов

Использование: для исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов. Сущность: заключается в том, что генератор меченых нейтронов содержит герметичный корпус, в котором установлены источник ионов, источник газообразного...
Тип: Изобретение
Номер охранного документа: 0002467317
Дата охранного документа: 20.11.2012
09.06.2019
№219.017.7f9c

Электростатический экран

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей. Цилиндрический электростатический экран электрофизической аппаратуры выполнен из высокоомного материала композитов...
Тип: Изобретение
Номер охранного документа: 0002466473
Дата охранного документа: 10.11.2012
19.06.2019
№219.017.8b0b

Устройство дуговой защиты с определением местоположения и мощности электрической дуги

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Устройство содержит N фотодетекторов, подключенных к входам аналого-цифровых преобразователей (АЦП) микропроцессора, N выходов которого подключены к входам соответствующих N исполнительных...
Тип: Изобретение
Номер охранного документа: 0002446535
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.9a92

Сигнализатор избыточного давления, способ формирования профиля мембраны для сигнализатора избыточного давления

Сигнализатор избыточного давления и способ формирования профиля мембраны для него относятся к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначены для предотвращения перегрузки. В корпусе сигнализатора избыточного давления, в котором...
Тип: Изобретение
Номер охранного документа: 0002245526
Дата охранного документа: 27.01.2005
29.06.2019
№219.017.9ff7

Комплекс программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности, за счет уменьшения задержки переключения на резерв при отказах сетевого оборудования и исключения потери данных. Комплекс программно-аппаратных средств автоматизации контроля и управления...
Тип: Изобретение
Номер охранного документа: 0002450305
Дата охранного документа: 10.05.2012
29.06.2019
№219.017.a0e2

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности, быстрое переключение на резервное оборудование, освобождение вычислительных ресурсов от задач управления резервированием. Он достигается тем, что в комплексе средств автоматизации...
Тип: Изобретение
Номер охранного документа: 0002431174
Дата охранного документа: 10.10.2011
29.06.2019
№219.017.a0f6

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности системной шины, повышение скорости сбора данных технологического процесса, повышение отказоустойчивости. Он достигается тем, что в комплексе программно-аппаратных средств...
Тип: Изобретение
Номер охранного документа: 0002430400
Дата охранного документа: 27.09.2011
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
14.05.2023
№223.018.5591

Сейсмометр

Изобретение относится к сейсмометрам. Сущность: сейсмометр содержит корпус (1), два упругих элемента (2) между кронштейном (3) и корпусом (1), две магнитные системы (4). Магнитные системы (4) состоят из последовательно соединенных цилиндрических магнитопроводов (5), постоянного магнита (6)...
Тип: Изобретение
Номер охранного документа: 0002738733
Дата охранного документа: 16.12.2020
Показаны записи 161-163 из 163.
20.06.2019
№219.017.8d36

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002692004
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8d79

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного...
Тип: Изобретение
Номер охранного документа: 0002691923
Дата охранного документа: 18.06.2019
25.07.2019
№219.017.b840

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в предварительном подогреве...
Тип: Изобретение
Номер охранного документа: 0002695440
Дата охранного документа: 23.07.2019
+ добавить свой РИД