×
19.01.2018
218.016.0e1a

Результат интеллектуальной деятельности: Передающая адаптивная антенная решетка

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи при передаче широкополосных сигналов в условиях ведения радиоразведки, а также для обеспечения электромагнитной совместимости радиоэлектронных средств и электромагнитной экологии. В передающую адаптивную антенную решетку, содержащую N антенных элементов, N блоков комплексного взвешивания сигналов, адаптивный процессор, выполненный из совокупности К блоков формирования весовых коэффициентов, дополнительно введены система усилителей, N цифро-аналоговых преобразователей, система распределения мощности, источник питания, возбудитель, модулятор, в адаптивный процессор дополнительно введен блок аппроксимации вектора весовых коэффициентов, а в каждый из К блоков формирования вектора весовых коэффициентов дополнительно введены блок формирования управляющего вектора и блок формирования помехового вектора. Технический результат заключается в возможности обеспечения передачи широкополосных сигналов в необходимых направлениях в условиях обеспечения радиоскрытности, электромагнитной совместимости радиоэлектронных средств и электромагнитной экологии. 7 ил.

Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи при передаче широкополосных сигналов в условиях ведения радиоразведки, а также для обеспечения электромагнитной совместимости радиоэлектронных средств и электромагнитной экологии.

Известна адаптивная антенная решетка [1, с. 56, 2], содержащая N антенных элементов. В канал каждого антенного элемента введено устройство с квадратурными каналами, с помощью которого сигнал разделяется на синфазную и квадратурную составляющие, а каждая из составляющих подвергается операции умножения на весовой коэффициент. Получаемые после такой обработки сигналы складываются в сумматоре. Управление величинами весовых коэффициентов осуществляется с помощью сигнального процессора.

Однако данная адаптивная антенная решетка способна обрабатывать только узкополосные сигналы и функционирует только на прием.

Известна адаптивная антенная решетка [3], содержащая антенные элементы, гибридные устройства, обеспечивающие разделение сигналов на синфазные и квадратурные составляющие, весовые умножители, общий сумматор, адаптивные контуры, полосовой и заградительный фильтры, блоки измерения мощности, блок сравнения и блок управления. С помощью фильтров, блоков измерения мощности, блока сравнения и блока управления обеспечивается минимизация и максимизация выходной мощности общего сумматора в режимах подавления помехи и выделения полезного сигнала.

Недостатком данной адаптивной антенной решетки является усложнение схемы адаптивной антенной решетки и необходимость раздельного выполнения режимов минимизации помехи и максимизации мощности полезного сигнала. Также данная решетка является приемной.

Известна адаптивная антенная решетка [4], содержащая 7Y антенных элементов, соединенных через комплексные весовые умножители с входами общего сумматора, N адаптивных контуров, первые входы которых соединены с выходами соответствующих антенных элементов, а вторые входы - с выходами общего сумматора. Первые выходы адаптивных контуров подключены к соответствующим входам комплексных весовых умножителей. Первые и вторые входы блока максимизации выходной мощности соединены соответственно с первыми и вторыми выходами адаптивных контуров, а выходы - с соответствующими входами адаптивных контуров. Адаптивная антенная решетка обладает большей помехозащищенностью по отношению к помеховым сигналам независимо от их полосы частот.

Однако подобную адаптивную антенную решетку целесообразно использовать при приеме сигналов, имеющих паузу в ходе их передачи, например, сигналов с псевдослучайной перестройкой частоты. Кроме того, введение блока максимизации выходной мощности и изменение связей, обусловленных этим введением, существенно усложняет адаптивную антенную решетку. Данная адаптивная антенная решетка функционирует только на прием и не может решать задачу передачи сигнала.

Для устранения недостатков устройств, реализующих классический способ пространственной фильтрации узкополосных сигналов, вводят трансверсальный фильтр или многоотводную линию задержки, обеспечивающую подавление помехи в полосе частот [1, с. 57-60].

Однако использование частотно-зависимого взвешивания с помощью многоотводной линии задержки связано с выбором и реализацией необходимой амплитудной и фазовой характеристик комплексных весовых коэффициентов. В предлагаемых аналогах устройства, обеспечивающие выбор и реализацию необходимой амплитудно-фазовой характеристики комплексных весовых коэффициентов, не рассматриваются. Также не рассматриваются возможности адаптивной антенной решетки функционировать на передачу.

Наиболее близким аналогом (прототипом) является адаптивная антенная решетка [5], в состав которой входят 7Y антенных элементов, блоки комплексного взвешивания сигналов, адаптивный процессор, общий сумматор, N полосовых фильтров, М сигнальных сумматоров и (M-l)xN блоков комплексного взвешивания сигналов, а адаптивный процессор выполнен в виде М блоков формирования весовых коэффициентов. При этом полосовые фильтры установлены на выходах антенных элементов. М выходов каждого полосового фильтра соединены с соответствующими входами М блоков формирования весовых коэффициентов непосредственно, а с соответствующими входами М сигнальных сумматоров - через блоки комплексного взвешивания сигналов, выходы М блоков формирования весовых коэффициентов подключены для соответствующей частотной составляющей полезного сигнала к управляющим входам блоков комплексного взвешивания сигналов, выходы М сигнальных сумматоров подключены к входам общего сумматора.

Однако когда необходимо осуществить передачу широкополосного сигнала и при этом обеспечить радиоскрытность, электромагнитную совместимость радиоэлектронных средств и электромагнитную экологию, рассматриваемая адаптивная антенная решетка не способна выполнить поставленную задачу, так как предназначена только для приема широкополосных сигналов в условиях помех.

Предлагаемая передающая адаптивная антенная решетка направлена на достижение технического результата - расширение функциональных возможностей, заключающихся в функции передачи широкополосных сигналов в условиях ведения радиоразведки и обеспечения электромагнитной совместимости радиоэлектронных средств и электромагнитной экологии.

Для достижения указанного технического результата в адаптивную антенную решетку, являющуюся наиболее близким аналогом (прототипом), содержащую N антенных элементов, N блоков комплексного взвешивания сигналов, адаптивный процессор, выполненный из совокупности К блоков формирования весовых коэффициентов, дополнительно введены система усилителей, N цифро-аналоговых преобразователей, система распределения мощности, источник питания, возбудитель, модулятор, в адаптивный процессор дополнительно введен блок аппроксимации вектора весовых коэффициентов, а в каждый из К блоков формирования вектора весовых коэффициентов дополнительно введен блок формирования управляющего вектора и блок формирования помехового вектора, при этом вход модулятора соединен с источником информации, управляющий выход модулятора соединен со входом возбудителя, информационный выход модулятора соединен с информационным входом каждого из N блоков комплексного взвешивания сигналов, выход возбудителя через систему распределения мощности соединен со входом каждого из N блоков комплексного взвешивания сигналов, выход каждого из N блоков комплексного взвешивания сигналов через цифро-аналоговый преобразователь и систему усилителей соединен со входом соответствующего антенного элемента, первый выход источника питания соединен со входом адаптивного процессора, второй выход соединен со входом системы усилителей, третий выход соединен со входом возбудителя, на информационные входы адаптивного процессора, а именно на информационные входы блока формирования управляющего вектора и блока формирования помехового вектора, входящие в состав каждого из К блоков формирования вектора весовых коэффициентов, поступают сигналы от внешнего источника, выход блока формирования управляющего вектора соединен со входом перемножителя, N выходов блока формирования помехового вектора соединены с N входами блока формирования ковариационной матрицы помеховых сигналов, N выходов которого соединены с N входами блока обращения ковариационной матрицы помеховых сигналов, N выходов блока обращения ковариационной матрицы помеховых сигналов соединены со входами перемножителя, выход перемножителя, являющийся выходом каждого из К блоков формирования вектора весовых коэффициентов соединен со входом блока аппроксимации вектора весовых коэффициентов, выход которого является управляющим выходом адаптивного процессора и соединен с управляющим входом каждого из N блоков комплексного взвешивания сигналов.

Проведенный сравнительный анализ заявленного устройства и устройства-прототипа показывает, что заявленное устройство отличается тем, что:

- введены модулятор, возбудитель, источник питания, система распределения мощности, цифро-аналоговые преобразователи и система усилителей;

- изменены связи между элементами;

- в адаптивный процессор введен блок аппроксимации вектора весовых коэффициентов;

- в блок формирования вектора весовых коэффициентов введен блок формирования управляющего вектора и блок формирования помехового вектора.

Сочетание отличительных признаков предложенной передающей адаптивной антенной решетки из доступной литературы неизвестно, поэтому она соответствует критерию изобретения «новизна».

Анализ известных технических решений (аналогов) в исследуемой области и смежной с ней областях позволяет сделать вывод, что введенные элементы в указанной совокупности неизвестны, и их введение в передающую адаптивную антенную решетку указанным образом и с указанными связями позволяет обеспечить ей новое свойство: передачу полезного широкополосного сигнала в условиях обеспечения радиоскрытности, электромагнитной совместимости и электромагнитной экологии. В целом это обеспечивает заявляемому решению соответствие критерию «изобретательский уровень».

На фиг. 1 приведена структурная схема передающей адаптивной антенной решетки.

На фиг. 2 представлена структурная схема адаптивного процессора.

На фиг. 3 приведена структурная схема блока формирования весовых коэффициентов.

На фиг. 4 приведена диаграмма направленности передающей антенной решетки на частоте ϕ1.

На фиг. 5 приведена диаграмма направленности передающей антенной решетки на частоте ϕ2.

На фиг.6 представлен вариант аппроксимации реальной части частотно-зависимого вектора весовых коэффициентов для 17 канала управления антенной решетки кусочно-линейной функцией при К=16. Причем кривая 1 представляет собой реальную часть оптимального частотно-зависимого вектора весовых коэффициентов для 17 канала управления антенной решетки, а кривая 2 - реальную часть квазиоптимального (аппроксимированного) частотно-зависимого вектора весовых коэффициентов.

На фиг. 7 представлен вариант аппроксимации мнимой части частотно-зависимого вектора весовых коэффициентов для 17 канала управления антенной решетки кусочно-линейной функцией при К=16. Причем кривая 1 представляет собой мнимую часть оптимального частотно-зависимого вектора весовых коэффициентов для 17 канала управления антенной решетки, а кривая 2 - мнимую часть квазиоптимального (аппроксимированного) частотно-зависимого вектора весовых коэффициентов.

В состав передающей адаптивной антенной решетки (фиг. 1) входят антенные элементы 1, образующие N-элементную антенную решетку и соединенные с выходами системы усилителей 2, N цифро-аналоговых преобразователей 3, соединенных со входами системы усилителей 2 и с выходами N блоков 5 комплексного взвешивания сигналов, адаптивный процессор 4, выход которого соединен со входами каждого из N блоков 5 комплексного взвешивания сигналов, система распределения мощности 6, N выходов которой соединены со входами N блоков 5 комплексного взвешивания сигналов. Выходы источника питания 7 соединены со входами адаптивного процессора 4, системы усилителей 2 и возбудителя 8. Управляющий выход модулятора 9 соединен со входом возбудителя 8, информационный выход модулятора 9 соединен с информационным входом каждого из N блоков 5 комплексного взвешивания сигналов. Вход модулятора 9 соединен с источником информации.

Адаптивный процессор 4 (фиг. 2) состоит из совокупности К блоков 10 формирования вектора весовых коэффициентов, информационные входы которых соединены с внешним источником, и блока 11 аппроксимации вектора весовых коэффициентов, входы которого соединены с каждым из К блоков 10 формирования вектора весовых коэффициентов, а выход которого является управляющим выходом адаптивного процессора.

Каждый из К блоков 10 формирования вектора весовых коэффициентов (фиг. 3) состоит из блока 12 формирования управляющего вектора, информационный вход которого соединен с внешним источником, а выход со входом перемножителя 16, блока 13 формирования помехового вектора, информационный вход которого также соединен с внешним источником, а N выходов, по числу элементов антенной решетки, соединены с N входами блока 14 формирования ковариационной матрицы помеховых сигналов. N выходов блока 14 формирования ковариационной матрицы помеховых сигналов соединены с N входами блока 15 обращения ковариационной матрицы помеховых сигналов, выходы которого соединены со входами перемножителя 16. Выход перемножителя 16 является выходом блока 10 формирования вектора весовых коэффициентов.

Прежде чем рассмотреть функционирование предлагаемой передающей адаптивной антенной решетки, проведем теоретическое обоснование режима передачи широкополосных полезных сигналов, реализованного в предлагаемом устройстве, при обеспечении радиоскрытности, электромагнитной совместимости радиоэлектронной аппаратуры и электромагнитной экологии.

Рассмотрим N-элементную антенную решетку с известной геометрией излучающего раскрыва, осуществляющую передачу полезного широкополосного сигнала с направления θ0, ϕ0 и формирование «нуля» диаграммы направленности (ДН) антенной решетки в направлениях θl, ϕl (l=1, …, L). Требуется определить и реализовать набор частотно-зависимых весовых коэффициентов в каналах передающей адаптивной антенной решетки, обеспечивающих формирования «нулей» ДН в требуемых частотных диапазонах и направлениях.

На основе формулировки критерия оптимальной обработки широкополосного сигнала по максимуму ОСПШ [6] сформулируем аналогичный критерий для передающей адаптивной антенной решетки:

где Rss(ω) ~ частотно-зависимая ковариационная матрица полезного сигнала;

Rnn(ω)- частотно-зависимая ковариационная матрица сигналов помех;

W(ω) - частотно-зависимый вектор весовых коэффициентов;

ω1, ω2 ~ определяют полосу частот, в которой передается полезный сигнал;

T, * - символы операций транспонирования и комплексного сопряжения соответственно.

Интеграл (1) принимает максимальное значение, когда подынтегральное выражение является максимальным для каждой частоты. Это позволяет представить оптимальную частотную зависимость весовых коэффициентов в виде [6]:

где - управляющий вектор, обеспечивающий построение ДН в состоянии покоя.

ε0, μ0 - электрическая и магнитная постоянные свободного пространства соответственно;

θ0, ϕ0 - направление передачи полезного широкополосного сигнала;

xn, yn ~ координаты n -го элемента антенной решетки.

Частотно-зависимая ковариационная матрица помеховых сигналов при произвольном числе помеховых сигналов определяется соотношением вида:

где σ2 - мощность тепловых шумов антенной решетки;

Р - мощность l-го помехового сигнала, l=1, …, L;

- помеховый вектор-столбец, элементами которого являются комплексные сомножители, учитывающие фазовый набег на каждом элементе антенной решетки.

Тогда обратная частотно-зависимая ковариационная матрица имеет вид:

В соотношении (4) известны все члены за исключением частотно-зависимых коэффициентов αlp(ω), которые можно найти из выражения (3) и (4) из условия

Таким образом, выражение для оптимального частотно-зависимого вектора весовых коэффициентов можно записать в виде

Однако точно реализовать данную зависимость технически невозможно. Поэтому предлагается обеспечить точную реализацию значений вектора весовых коэффициентов в полосе частот полезного сигнала для ограниченного числа К частот из данного частотного интервала. Между данными частотами значения весовых коэффициентов могут быть аппроксимированы достаточно простой зависимостью, например, кусочно-постоянной функцией или кусочно-линейной. Выбор числа частот К определяется с учетом противоречивых требований, например:

- увеличение числа частот К, для которых обеспечивается точная реализация значений весовых коэффициентов, приводит к более точному формированию «нулей» ДН передающей адаптивной антенной решетки в требуемых направлениях;

- увеличение числа частот К обуславливает резкое усложнение антенны.

Предлагаемая передающая адаптивная антенная решетка функционирует следующим образом.

На информационный вход модулятора 9 поступает сигнал от источника информации, который необходимо передать абоненту. Модулятор 9 производит модуляцию сигнала по определенному закону и передает его на информационный вход каждого из /У блоков 5 комплексного взвешивания сигналов. Также модулятор 9 подает управляющее воздействие на возбудитель 8, который начинает передавать энергию от источника питания 7 на вход системы распределения мощности 6. Система распределения мощности 6 распределяет энергию по всем N каналам управления передающей адаптивной антенной решетки. На информационный вход адаптивного процессора 4, а именно на каждый блок 12 формирования управляющего вектора, входящего в состав каждого из К блоков 10 формирования вектора весовых коэффициентов, поступает оперативная информация о направлении передачи полезного широкополосного сигнала θ0, ϕ0 и частотой составляющей ωk, на которой будет формироваться ДН. На информационный вход каждого блока 13 формирования помехового вектора, входящего в состав каждого из К блоков 10 формирования вектора весовых коэффициентов, поступает оперативная информация о запрещенных частотах и направлениях излучения. Также на адаптивный процессор 4 поступает сигнал от источника питания 7 для его энергообеспечения. Адаптивный процессор 4 формирует управляющий сигнал в виде частотно-зависимого вектора весовых коэффициентов для каждого из N каналов передающей адаптивной антенной решетки и передает его на соответствующий блок 5 комплексного взвешивания сигналов. Сигналы от блока 5 комплексного взвешивания сигналов, соответствующие требуемой в настоящий момент форме ДН передающей адаптивной антенной решетки, поступают на соответствующие цифро-аналоговые преобразователи 3, где производится их преобразование в аналоговый вид. Далее сигналы через систему усилителей 2, которая получает энергию от источника питания 7, поступают на элементы антенной решетки 1 и излучаются в требуемых направлениях.

Рассмотрим подробнее функционирование адаптивного процессора 4, а также входящего в него одного из К блоков 10 формирования вектора весовых коэффициентов. На информационный вход блока 12 формирования управляющего вектора, входящего в состав блока 10 формирования вектора весовых коэффициентов, поступает оперативная информация от внешнего источника о направлении и частотой составляющей излучения полезного широкополосного сигнала. В блоке 12 формирования управляющего вектора производится формирование вектора S0k), обеспечивающего построение ДН передающей адаптивной антенной решетки в состоянии покоя для заданной частотной составляющей, который поступает на вход перемножителя 16. На информационный вход блока 13 формирования помехового вектора, входящего в состав блока 10 формирования вектора весовых коэффициентов, поступает оперативная информация о запрещенных частотах и направлениях излучения, то есть информация о том, на каких частотах и в каких направления антенная решетка не должна излучать. Это необходимо для обеспечения радиоскрытности, электромагнитной совместимости радиоэлектронной аппаратуры и электромагнитной экологии. В блоке 13 формирования помехового вектора производится формирование «условного» помехового вектора, имитирующего помеховый сигнал, излучаемый с определенного направления с определенной мощностью на определенной частоте, с учетом фазовых набегов для каждого элемента антенной решетки. Сигналы с N выходов блока 13 формирования помехового вектора поступают на входы блока 14 формирования ковариационной матрицы помеховых сигналов, откуда поступают на входы блока 15 обращения ковариационной матрицы помеховых сигналов, а далее на перемножитель 16, где производится формирование вектора весовых коэффициентов для одной из К частот. Каждый из блоков 15, обеспечивающих обращение ковариационной матрицы помеховых сигналов на соответствующей частоте, реализует итерационный алгоритм обращения на основе метода «окаймления», описанного например в [7, 8]. Выполнение операций матричного умножения реализуется с использованием типовых элементов перемножения сигналов и не имеет принципиальных сложностей. Выход перемножителя 16 является выходом блока 10 формирования вектора весовых коэффициентов. Далее сигналы с каждого из К блоков формирования вектора весовых коэффициентов, соответствующие вектору весовых коэффициентов для одной из К частот спектра передаваемого полезного широкополосного сигнала, поступают на блок 11 аппроксимации вектора весовых коэффициентов, где производится аппроксимация вектора весовых коэффициентов для каждого канала управления антенной решетки по частоте для К отсчетов (фиг. 6, 7). Далее сигнал, соответствующий частотно-зависимому вектору весовых коэффициентов для соответствующего канала управления антенной решетки, поступает на соответствующий управляющий вход блока 5 комплексного взвешивания сигналов.

Для исследования возникающих закономерностей рассмотрим антенную решетку 10×10 (N=100), элементы которой расположены с шагом 0.5λ (λ - длина волны, соответствующая средней частоте диапазона полезного сигнала). Направление излучения полезного сигнала θ0=0°, ϕ0=0° с базой B=200, а в направлении θ1=30°…54°, ϕ1=0° на частоте ω2 антенная решетка излучать не должна (фиг.5). Данная информация от внешнего источника оперативно поступает на блоки 12 и 13 блока 10 формирования вектора весовых коэффициентов.

А на фиг. 4 показано, что на частоте ωх в направлении θ=30°…54°, ϕ1=0° передающая антенная решетка излучает, так как на этой частоте радиоразведка не ведется.

Аналогичным образом обеспечивается и электромагнитная совместимость радиоэлектронных средств и электромагнитная экология.

Как показывают результаты исследований, увеличение числа интервалов К приводит, с одной стороны, к увеличению точности восстановления широкополосных сигналов в присутствии помех, а, с другой стороны, - к резкому усложнению антенны.

Передающая адаптивная антенная решетка может быть реализована на современной элементной базе. Выполнение введенных блоков не вызывает затруднений.

Сказанное выше подтверждает соответствие критерию «промышленная применимость» предложенного технического решения.

Таким образом, введение модулятора, возбудителя, источника питания, системы распределения мощности, цифро-аналоговых преобразователей и системы усилителей, в адаптивный процессор - блока аппроксимации вектора весовых коэффициентов, а в блок формирования вектора весовых коэффициентов - блока формирования управляющего вектора и блока формирования помехового вектора позволяет обеспечить передачу широкополосных сигналов в необходимых направлениях в условиях обеспечения радиоскрытности, электромагнитной совместимости радиоэлектронных средств и электромагнитной экологии.

Литература

1. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки: Введение в теорию: Пер. с англ. - М.: Радио и связь, 1986. - 448 с.

2. Авторское свидетельство 1506569. Устройство для приема широкополосных сигналов с адаптивной антенной решеткой / В.И. Журавлев, Г.О. Бокк. - Бюллетень изобретений №33, 25.06.1987 г. - H04L 7/02.

3. Авторское свидетельство 1548820. Адаптивная антенная решетка / Л.А. Марчук, В.В. Поповский, В.И. Евдокимов, С.М. Крымов, И.В. Сергеев. -Бюллетень изобретений №9, 07.03.1990 г. -H01Q 21/00.

4. Патент 2099838 (РФ). Адаптивная антенная решетка / А.В. Колинько, В.Ф.Комарович, Марчук Л.А., Савельев А.Н. - Опубл. 20.12.97 г. - H01Q 21/00.

5. Патент 2466482 (РФ). Адаптивная антенная решетка / Габриэльян Д.Д., Новиков А.Н., Шацкий В.В., Шацкий Н.В. - Опубл. 10.11.12 г. - H01Q 3/26, H01Q 21/00.

6. Габриэльян Д.Д., Новиков А.Н., Цыпорина И.Г. Оптимальное подавление широкополосных помех в адаптивных антенных решетках. Электромагнитные волны и электронные системы», Т. 16, №6, г. Москва, 2011 г., с. 20-23.

7. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. - М.: Наука, 1984.-320 с.

8. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. -М.- Л.: Госиздат физ.-мат.Литературы, 1963. - 735 с.

Передающая адаптивная антенная решетка, содержащая N антенных элементов, N блоков комплексного взвешивания сигналов, адаптивный процессор, выполненный из совокупности K блоков формирования весовых коэффициентов, отличающаяся тем, что дополнительно введены система усилителей, N цифро-аналоговых преобразователей, система распределения мощности, источник питания, возбудитель, модулятор, в адаптивный процессор дополнительно введен блок аппроксимации вектора весовых коэффициентов, а в каждый из K блоков формирования вектора весовых коэффициентов дополнительно введены блок формирования управляющего вектора и блок формирования помехового вектора, при этом вход модулятора соединен с источником информации, управляющий выход модулятора соединен со входом возбудителя, информационный выход модулятора соединен с информационным входом каждого из N блоков комплексного взвешивания сигналов, выход возбудителя через систему распределения мощности соединен со входом каждого из N блоков комплексного взвешивания сигналов, выход каждого из N блоков комплексного взвешивания сигналов через цифро-аналоговый преобразователь и систему усилителей соединен со входом соответствующего антенного элемента, первый выход источника питания соединен со входом адаптивного процессора, второй выход соединен со входом системы усилителей, третий выход соединен со входом возбудителя, на информационные входы адаптивного процессора, а именно на информационные входы блока формирования управляющего вектора и блока формирования помехового вектора, входящие в состав каждого из K блоков формирования вектора весовых коэффициентов, поступают сигналы от внешнего источника, выход блока формирования управляющего вектора соединен со входом перемножителя, N выходов блока формирования помехового вектора соединены с N входами блока формирования ковариационной матрицы помеховых сигналов, N выходов которого соединены с N входами блока обращения ковариационной матрицы помеховых сигналов, N выходов блока обращения ковариационной матрицы помеховых сигналов соединены со входами перемножителя, выход перемножителя, являющийся выходом каждого из K блоков формирования вектора весовых коэффициентов, соединен со входом блока аппроксимации вектора весовых коэффициентов, выход которого является управляющим выходом адаптивного процессора и соединен с управляющим входом каждого из N блоков комплексного взвешивания сигналов.
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Передающая адаптивная антенная решетка
Источник поступления информации: Роспатент

Показаны записи 31-40 из 105.
29.12.2017
№217.015.fc59

Ресурсосберегающий способ ликвидации сооружений шахтного типа

Изобретение относится к области взрывных работ специального назначения. В донной части ствола шахты на цилиндрической стенке металлического стакана устанавливают кольцевой удлиненный кумулятивный заряд бризантного взрывчатого вещества и подрывают его. Затем на дно шахты помещают компактный...
Тип: Изобретение
Номер охранного документа: 0002638047
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fdb3

Малогабаритный инфракрасный твердотельный лазер

Изобретение относится к лазерной технике. Малогабаритный инфракрасный твердотельный лазер содержит лазер накачки и кристалл Fe:ZnSe - пассивный модулятор добротности, При этом на грани кристалла Fe:ZnSe, параллельные оптической оси лазера накачки, нанесены полупрозрачное и отражающее...
Тип: Изобретение
Номер охранного документа: 0002638078
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0412

Устройство определения разновысотных высокоточных геодезических базовых направлений в полевых условиях

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута базового геодезического направления в полевых условиях, располагаемого на различной высоте по отношению к горизонту, азимут которого определяется с высокой точностью гироскопическим методом....
Тип: Изобретение
Номер охранного документа: 0002630524
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0445

Азимутальная ориентация платформы трехосного гиростабилизатора

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени...
Тип: Изобретение
Номер охранного документа: 0002630526
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0657

Устройство для адаптивной оценки помехоустойчивости широкополосного радиоканала

Изобретение относится к области электросвязи. Технический результат заключается в повышении надежности и помехоустойчивости радиоканала. Устройство содержит: анализатор принимаемых сигналов, два счетчика ошибок, блок сравнения, дешифратор, реверсивный счетчик, дешифратор номера состояния,...
Тип: Изобретение
Номер охранного документа: 0002631157
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.07ae

Способ определения критических условий разрушения оболочек детонирующих удлиненных зарядов и устройство для его осуществления

Изобретение относится к средствам и системам разведения детонационных команд и устройствам взрывной логики. Оболочку детонирующего удлиненного заряда (ДУЗ) с переменной по длине толщиной стенки снаряжают одним из известных способов бризантным взрывчатым веществом – ВВ. Твердым порошкообразным...
Тип: Изобретение
Номер охранного документа: 0002631457
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.09a3

Устройство для диагностического контроля выполнения проверок

Изобретение относится к вычислительной технике и может быть использовано для составления тестов сложных цифровых систем. Технический результат заключается в сокращении времени проведения проверок для диагностики тех или иных неисправностей. Технический результат достигается за счет устройства,...
Тип: Изобретение
Номер охранного документа: 0002631989
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.0a13

Способ прогнозной оценки эффективности многоэтапных процессов

Изобретение относится к способу расчета прогнозного значения показателя эффективности многоэтапных процессов. Технический результат заключается в обеспечении автоматизированного расчета прогнозного значения показателя эффективности многоэтапных процессов. В способе записывают в запоминающее...
Тип: Изобретение
Номер охранного документа: 0002632124
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0aba

Способ активной радиомаскировки радиоэлектронных средств станциями активных помех и устройство для его реализации

Изобретение относится к области радиотехники и может использоваться для защиты электромагнитных излучений радиоэлектронных средств (РЭС) от средств воздушной и космической радио- и радиотехнической разведки. Достигаемый технический результат – повышение эффективности активной радиомаскировки...
Тип: Изобретение
Номер охранного документа: 0002632219
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0ae3

Способ противодействия оптико-электронной разведке

Способ относится к области маскировки и касается способа противодействия оптико-электронной разведке. Способ включает в себя нанесение на маскирующий объект материала набора пятен неправильной формы, представляющих собой полутоновой растр, частота которого выбрана так, чтобы элементы растра...
Тип: Изобретение
Номер охранного документа: 0002632271
Дата охранного документа: 03.10.2017
Показаны записи 31-40 из 54.
29.12.2017
№217.015.fdb3

Малогабаритный инфракрасный твердотельный лазер

Изобретение относится к лазерной технике. Малогабаритный инфракрасный твердотельный лазер содержит лазер накачки и кристалл Fe:ZnSe - пассивный модулятор добротности, При этом на грани кристалла Fe:ZnSe, параллельные оптической оси лазера накачки, нанесены полупрозрачное и отражающее...
Тип: Изобретение
Номер охранного документа: 0002638078
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0412

Устройство определения разновысотных высокоточных геодезических базовых направлений в полевых условиях

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута базового геодезического направления в полевых условиях, располагаемого на различной высоте по отношению к горизонту, азимут которого определяется с высокой точностью гироскопическим методом....
Тип: Изобретение
Номер охранного документа: 0002630524
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0445

Азимутальная ориентация платформы трехосного гиростабилизатора

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени...
Тип: Изобретение
Номер охранного документа: 0002630526
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0657

Устройство для адаптивной оценки помехоустойчивости широкополосного радиоканала

Изобретение относится к области электросвязи. Технический результат заключается в повышении надежности и помехоустойчивости радиоканала. Устройство содержит: анализатор принимаемых сигналов, два счетчика ошибок, блок сравнения, дешифратор, реверсивный счетчик, дешифратор номера состояния,...
Тип: Изобретение
Номер охранного документа: 0002631157
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.07ae

Способ определения критических условий разрушения оболочек детонирующих удлиненных зарядов и устройство для его осуществления

Изобретение относится к средствам и системам разведения детонационных команд и устройствам взрывной логики. Оболочку детонирующего удлиненного заряда (ДУЗ) с переменной по длине толщиной стенки снаряжают одним из известных способов бризантным взрывчатым веществом – ВВ. Твердым порошкообразным...
Тип: Изобретение
Номер охранного документа: 0002631457
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.09a3

Устройство для диагностического контроля выполнения проверок

Изобретение относится к вычислительной технике и может быть использовано для составления тестов сложных цифровых систем. Технический результат заключается в сокращении времени проведения проверок для диагностики тех или иных неисправностей. Технический результат достигается за счет устройства,...
Тип: Изобретение
Номер охранного документа: 0002631989
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.0a13

Способ прогнозной оценки эффективности многоэтапных процессов

Изобретение относится к способу расчета прогнозного значения показателя эффективности многоэтапных процессов. Технический результат заключается в обеспечении автоматизированного расчета прогнозного значения показателя эффективности многоэтапных процессов. В способе записывают в запоминающее...
Тип: Изобретение
Номер охранного документа: 0002632124
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0aba

Способ активной радиомаскировки радиоэлектронных средств станциями активных помех и устройство для его реализации

Изобретение относится к области радиотехники и может использоваться для защиты электромагнитных излучений радиоэлектронных средств (РЭС) от средств воздушной и космической радио- и радиотехнической разведки. Достигаемый технический результат – повышение эффективности активной радиомаскировки...
Тип: Изобретение
Номер охранного документа: 0002632219
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0ae3

Способ противодействия оптико-электронной разведке

Способ относится к области маскировки и касается способа противодействия оптико-электронной разведке. Способ включает в себя нанесение на маскирующий объект материала набора пятен неправильной формы, представляющих собой полутоновой растр, частота которого выбрана так, чтобы элементы растра...
Тип: Изобретение
Номер охранного документа: 0002632271
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0c91

Переносной беспилотный летательный аппарат многоцелевого назначения

Изобретение относится к области авиационной техники, а именно к беспилотным летательным аппаратам. Переносной беспилотный летательный аппарат многоцелевого назначения включает несущую раму, винтовые движители, аккумуляторную батарею, маршрутное вычислительное устройство, подвесы для крепления...
Тип: Изобретение
Номер охранного документа: 0002632779
Дата охранного документа: 09.10.2017
+ добавить свой РИД