×
19.01.2018
218.016.0802

Результат интеллектуальной деятельности: Способ определения границ пластичности грунтов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области инженерных изысканий. В способе определения границ пластичности грунтов, заключающемся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей w и k линейной зависимости влажности грунта на границе текучести от числа пластичности W=w+k⋅I, при степени влажности 0,97-0,98, погружению конусного индентора с углом 30° при вершине и определении по формулам влажности грунта на границе текучести и на границе раскатывания, образец грунта помещают в цилиндрическую камеру диаметром не менее 60 мм и высотой не менее 45 мм и размещают соосно вершине конуса индентора, а погружение конусного индентора производят с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм и с регистрацией величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора с дискретностью не более 2,0 Н, при этом в полученном массиве значений сопротивления образца грунта погружению конусного индентора выделяют диапазон инвариантных значений сопротивления грунта погружению конусного индентора из заданного соотношения, а определение влажности грунта на границе текучести и на границе раскатывания производят на основании заданных расчетных зависимостей. Достигается упрощение и ускорение определения границ пластичности грунтов, исключение влияния на результаты определений субъективных факторов, возможность оценки погрешности определения удельного сопротивления грунта пенетрации при испытании одного образца грунта. 1 ил.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения границ пластичности (раскатывания и текучести) грунтов.

Известен способ определения границ пластичности (раскатывания и текучести) грунтов [ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик], предусматривающий определение границы раскатывания грунтов как влажности, при которой грунт, раскатываемый в жгут диаметром 3 мм, начинает распадаться на кусочки длиной 3-10 мм, а определение границы текучести грунтов - как влажности, при которой балансирный конус с углом 30° при вершине и массой 76 г погружается под действием собственного веса за 5 с на глубину 10 мм.

Недостатками этого известного способа являются:

- необходимость подготовки и испытания двух образцов одного и того же грунта;

- при определении границы раскатывания грунтов раскатывание грунтов в жгут производится вручную, требует стабильных навыков от исполнителей и значительных затрат времени и приводит к профзаболеваниям кожи рук исполнителей;

- при определении границы текучести грунтов влажность грунтов подбирается добавлением воды в грунт или уменьшением воды в грунте путем его подсушивания и также требует стабильных навыков от исполнителей и значительных затрат времени;

- низкие точность и достоверность, а также нестабильность результатов определения границ пластичности грунтов;

- невозможность оценки погрешностей определения границ пластичности грунтов и подтверждения достоверности результатов определения из-за получения при испытании конкретного грунта только одного значения удельного сопротивления его первого образца и одного значения удельного сопротивления его второго образца;

- для оценки погрешностей определения границ пластичности грунтов и подтверждения достоверности результатов определения необходимо проведение испытания нескольких образцов одного и того же грунта, что увеличивает длительность и стоимость испытаний;

- сложность механизации и автоматизации.

Известен способ определения границ пластичности грунтов [Разоренов В.Ф. Пенетрационные испытания грунтов: (Теория и практика применения). - М.: Стройиздат, 1980. - 248 с.], заключающийся в определении удельного сопротивления двух образцов одного и того же грунта при разной влажности погружению конусного индентора с углом 30° при вершине, в построении графика зависимости удельного сопротивления грунта от влажности по двум точкам, полученным при испытании первого и второго образцов, и определении по этому графику влажности грунта на границе раскатывания при удельном сопротивлении грунта погружению конусного индентора, равном 186,3 кПа, и на границе текучести при удельном сопротивлении грунта погружению конусного индентора, равном 7,5 кПа.

Недостатками известного способа являются:

- необходимость подготовки и испытания двух образцов одного и того же грунта;

- построение графика зависимости удельного сопротивления грунта от влажности грунта производится всего лишь по двум точкам, полученным при испытании первого и второго образцов грунта. Это снижает достоверность результатов определения границ пластичности грунтов;

- графическое определение влажности грунтов на границе раскатывания и на границе текучести по удельному сопротивлению грунта погружению конусного индентора снижает точность результатов;

- невозможность оценки погрешностей определения границ пластичности грунтов и подтверждения достоверности результатов определения из-за получения только одного значения удельного сопротивления первого образца грунта и одного значения удельного сопротивления второго образца грунта;

- для оценки погрешностей определения границ пластичности грунтов и подтверждения достоверности результатов определения необходимо проведение испытания нескольких образцов одного и того же грунта, что увеличивает длительность и стоимость испытаний.

Известен способ определения границ пластичности грунтов [Разоренов В.Ф. Пенетрационные испытания грунтов: (Теория и практика применения). - М.: Стройиздат, 1980. - 248 с. (прототип)], заключающийся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей wm и kw линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Ip, при влажности 0,97-0,98, погружению конусного индентора с углом 30° при вершине и определении по формулам влажности грунта на границе текучести и на границе раскатывания.

Недостатками известного способа являются:

- невозможность оценки погрешностей определения границ пластичности грунтов и подтверждения достоверности результатов определения из-за получения только одного значения удельного сопротивления образца грунта;

- для оценки погрешностей определения границ пластичности грунтов и подтверждения достоверности результатов определения необходимо проведение испытания нескольких образцов одного и того же грунта, что увеличивает длительность и стоимость испытаний.

Задача изобретения - повышение производительности определения границ пластичности грунтов, повышение точности и достоверности результатов определения границ пластичности грунтов при испытании одного образца грунта.

Технический результат изобретения - упрощение и ускорение определения границ пластичности грунтов, исключение влияния на результаты определений субъективных факторов, возможность оценки погрешности определения удельного сопротивления грунта пенетрации при испытании одного образца грунта.

Технический результат достигается тем, что в способе определения границ пластичности грунтов, заключающемся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей wm и kw линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Ip, при степени влажности 0,97-0,98, погружению конусного индентора с углом 30° при вершине и определении по формулам влажности грунта на границе текучести и на границе раскатывания, образец грунта помещают в цилиндрическую камеру диаметром не менее 60 мм и высотой не менее 45 мм и размещают соосно вершине конуса индентора, а погружение конусного индентора производят с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм и с регистрацией величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора с дискретностью не более 2,0 Н, при этом в полученном массиве значений сопротивления образца грунта погружению конусного индентора выделяют диапазон инвариантных значений сопротивления грунта погружению конусного индентора по условию:

где VR - коэффициент вариации значений удельного сопротивления погружению конусного индентора образца грунта;

0,15 - допустимое значение коэффициента вариации для физических характеристик грунтов [ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний (п.5.5)];

- среднее арифметическое инвариантных значений удельного сопротивления образца грунта погружению конусного индентора, кПа, определяемое по формуле:

где n - число инвариантных значений сопротивления образца грунта погружению конусного индентора, образующих непрерывный ряд;

Ri - удельное сопротивление образца грунта погружению конусного индентора на i-й глубине его погружения, кПа, определяемое по формуле

где Pi и hi - i-e значение величины сопротивления образца грунта погружению конусного индентора, Н, и соответствующее ему i-e значение глубины погружения конусного индентора, мм;

S - среднее квадратичное отклонение значений Ri от средних значений , кПа, определяемое по формуле:

а определение влажности грунта на границе текучести и на границе раскатывания производят по формулам:

где WL и WP - влажность грунта на границе соответственно текучести и раскатывания, %;

WS - влажность образца грунта при степени водонасыщения 0,97-0,98, %;

wm и kw - постоянные показатели линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Ip, известные для испытываемого типа грунтов конкретного региона (площадки) на основе экспериментальных данных, например, по методике Разоренова В.Ф. [Разоренов В.Ф. Пенетрационные испытания грунтов: (Теория и практика применения). - М.: Стройиздат, 1980. - 248 с.].

В частности:

- испытание образца грунта в цилиндрической камере диаметром не менее 60 мм и высотой не менее 45 мм, размещенной соосно вершине конуса индентора, обеспечивает одинаковый кольцевой зазор между конусом индентора и цилиндрической камерой, равномерное распределение сопротивления испытываемого образца грунта по поверхности конуса индентора и исключает выдавливание грунта из цилиндрической камеры и контакт конусного индентора с цилиндрической камерой и, соответственно, повышает точность и достоверность определения границ пластичности грунтов;

- погружение конусного индентора в образец грунта с постоянной скоростью, равной 120 мм/мин, обеспечивает плавное постоянное погружение конусного индентора в испытываемый образец грунта без релаксации величины сопротивления грунта погружению конусного индентора и, соответственно, повышает точность и достоверность определения границ пластичности грунтов за счет объективного характера выполняемых операций;

- погружение конусного индентора в образец грунта на глубину до 35 мм исключает выдавливание грунта из цилиндрической камеры, сквозное проникновение конусного индентора через образец грунта и его разрушение;

- измерение и регистрация величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора с дискретностью не более 2,0 Н обеспечивает получение большого массива значений сопротивления грунта погружению конусного индентора в одном испытании и, соответственно, повышает точность и достоверность определения границ пластичности грунтов;

- определение влажности грунта на границе раскатывания и на границе текучести по предложенным формулам повышает точность и достоверность определения границ пластичности грунтов.

Таким образом, совокупность указанных отличительных признаков обеспечивает новый положительный эффект и является сущностью изобретения.

Пояснения к заявляемому способу определения границ пластичности грунтов и один из вариантов устройства для реализации этого способа схематично приведены на чертеже, где на:

фиг. 1 - принципиальная блок-схема устройства для реализации способа определения границ пластичности грунтов.

Устройство для реализации способа определения границ пластичности грунтов состоит из цилиндрической камеры 1, размещенной на основании 2, конусного индентора 3, штока 4, размещенного в направляющей 5, привода 6, датчика 7 сопротивления грунта погружению конусного индентора, датчика 8 глубины погружения конусного индентора и регистратора 9 величины сопротивления грунта погружению конусного индентора.

Конусный индентор 3 имеет при вершине конуса угол 30°.

Цилиндрическая камера 1 является рабочей камерой для испытываемых образцов грунтов и имеет диаметр не менее 60 мм и высоту не менее 45 мм.

Датчик 7 сопротивления грунта погружению конусного индентора предназначен для измерения величины силы сопротивления грунта при погружении конусного индентора 3 с дискретностью не более 2,0 Н и жестко связан с конусным индентором 3 и штоком 4. Датчик 7 сопротивления грунта погружению конусного индентора может быть выполнен, например, в виде динамометра сжатия.

Датчик 8 глубины погружения конусного индентора предназначен для измерения глубины погружения конусного индентора 3 в испытываемый образец грунта с дискретностью не более 0,01 мм и жестко связан с конусным индентором 3 и основанием 2. Датчик 8 глубины погружения конусного индентора может быть выполнен, например, в виде растрового фотоэлектронного преобразователя линейных перемещений.

Регистратор 9 величины сопротивления грунта погружению конусного индентора предназначен для регистрации величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора 3 с дискретностью не более 2,0 Н. Регистрация величины сопротивления грунта погружению конусного индентора 3 в регистраторе 9 может производиться, например, в электронной цифровой памяти устройства или на диаграммной ленте самописца.

Направляющая 5 штока 4 жестко связана с основанием 2.

Привод 6 предназначен для погружения конусного индентора 3 с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм, извлечения из образца грунта и ускоренного возвращения конусного индентора 3 в исходное положение после испытания образца грунта.

Привод 6 жестко связан с основанием 2 и может быть электромеханическим, гидравлическим или пневматическим.

Способ определения границ пластичности грунтов осуществляется следующим образом.

Определяют влажность испытываемого грунта, имеющего известные значения показателей wm и kw линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Ip, ранее определенные для испытываемого типа грунтов конкретного региона (площадки) на основе экспериментальных данных по методике Разоренова В.Ф. [Разоренов В.Ф. Пенетрационные испытания грунтов: (Теория и практика применения). - М.: Стройиздат, 1980. - 248 с.] и отбирают из него один образец, который увлажняют до степени влажности 0,97-0,98, тщательно перемешивают до получения однородной массы, загружают в цилиндрическую камеру 1, выравнивают верхний торец заподлицо с краями камеры, устанавливают на основании 2 под конусным индентором 3 так, чтобы вершина конуса индентора находилась по центру образца и касалась его поверхности.

Включают устройство и приводом 6 производят погружение конусного индентора 3 в образец грунта с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм.

В процессе погружения конусного индентора 3 в образец грунта датчиком 7 измеряется сопротивление грунта погружению конусного индентора с дискретностью не более 2,0 Н, а датчиком 8 измеряется глубина погружения конусного индентора в испытываемый образец. грунта с дискретностью не более 0,01 мм. Сопротивление грунта погружению конусного индентора через каждые 0,01 мм погружения конусного индентора 3 регистрируется регистратором 9 величины силы сопротивления грунта погружению конусного индентора 3 с дискретностью не более 2,0 Н.

Затем привод 6 включают на обратный ход, извлекают конусный индентор 3 из образца грунта и производят обработку результатов.

Для каждого значения глубины погружения конусного индентора 3 определяют удельное сопротивление первого образца грунта Ri по формуле (3).

Из полученного массива значений удельного сопротивления образца грунта погружению конусного индентора выделяют диапазон инвариантных значений сопротивления грунта погружению конусного индентора по условию (1). Для этого определяют среднее арифметическое инвариантных значение удельного сопротивления образца грунта погружению конусного индентора по формуле (2) и среднее квадратичное отклонение значений Ri от средних значений по формуле (4), а затем определяют влажность грунта на границе текучести WL по формуле (5) и влажность грунта на границе раскатывания WP по формуле (6).

Погрешность определения границ пластичности (влажности на границе текучести ΔWL и влажности на границе раскатывания ΔWP) грунта определяют по формулам:

где δW - относительная погрешность определения влажности грунта, δW=0,05 при доверительной вероятности α=0,95 [ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний];

WS - влажность образца грунта при степени водонасыщения 0,97-0,98, %;

Н - коэффициент консистенции образца грунта, вычисляемый по его удельному сопротивлению пенетрации, Н=kw(1,522+0,715lg) [Разоренов В.Ф. Пенетрационные испытания грунтов: (Теория и практика применения). - М.: Стройиздат, 1980. - 248 с. ];

δН - относительная погрешность определения величины Н, которая вычисляется через погрешности величин kw и , а эти последние определяются экспериментально как случайные погрешности;

- среднее арифметическое инвариантных значений удельного сопротивления образца грунта при влажности WS погружению конусного индентора, кПа, определяемое по формуле (2);

δw - относительная погрешность определения величины wm, δw=0,05 при α=0,95 [ГОСТ 20522-2012];

δk - относительная погрешность определения величины kw, δk=0,05 при α=0,95 [ГОСТ 20522-2012];

wm и kw - постоянные показатели линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Ip, известные для испытываемого типа грунтов конкретного региона (площадки) на основе экспериментальных данных по методике Разоренова В.Ф. [Разоренов В.Ф. Пенетрационные испытания грунтов: (Теория и практика применения). - М.: Стройиздат, 1980. - 248 с.].

Таким образом, изобретение повышает точность и достоверность результатов определения границ пластичности грунтов при одном испытании одного образца грунта, упрощает и ускоряет определение границ пластичности грунтов, исключает влияние субъективных факторов на результаты определений границ пластичности грунтов, позволяет оценивать погрешности определения границ пластичности при испытании одного грунта.


Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Способ определения границ пластичности грунтов
Источник поступления информации: Роспатент

Показаны записи 151-160 из 489.
26.08.2017
№217.015.e14c

Способ производства мучного кондитерского изделия безглютенового типа

Изобретение относится к пищевой промышленности, а именно к производству безглютеновых мучных кондитерских изделий. Способ производства мучного кондитерского изделия безглютенового типа в виде коржиков включает сбивание размягченного маргарина, внесение сладкого компонента,...
Тип: Изобретение
Номер охранного документа: 0002625569
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e155

Способ повышения прочности детали с покрытием

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом и производят последующее упрочнение покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом. Расстояние между...
Тип: Изобретение
Номер охранного документа: 0002625619
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e158

Способ производства хлебцев хрустящих

Изобретение относится к хлебопекарной промышленности, в частности к производству хлебцев. Техническим результатом изобретения является повышение содержания пищевых волокон, снижение калорийности, улучшение реологических и органолептических свойств. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002625573
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e15a

Синусно-косинусный цифровой преобразователь

Изобретение относится к вычислительной технике и может быть использовано в управляющих системах и гибридных вычислительных устройствах для получения в следящем режиме одновременно кода непрерывной переменной (X) и кодов функций sin x и cos x. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002625609
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e162

Способ производства мучного кондитерского изделия на основе бисквитного полуфабриката

Изобретение относится к кондитерской промышленности. Способ включает приготовление бисквитного полуфабриката в две стадии. С внесением на первой стадии меланжа, сладкого компонента, инвертного сиропа, глицерина, молочно-белковой добавки, соды питьевой, соли поваренной, эмульгатора, воды,...
Тип: Изобретение
Номер охранного документа: 0002625571
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e166

Композиция для производства сахарного печенья функционального назначения

Изобретение относится к производству мучных кондитерских изделий. Композиция включает мучную смесь, содержащую пшеничную муку, подслащивающий агент в виде сахара, масло сливочное, молоко сгущенное, соль поваренную пищевую, двууглекислый натрий, аммоний углекислый, растительную добавку и воду...
Тип: Изобретение
Номер охранного документа: 0002625570
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e170

Бисквитный полуфабрикат функционального назначения

Изобретение относится к пищевой промышленности и может быть использовано при производстве бисквитного полуфабриката и изделий из него. Бисквитный полуфабрикат функционального назначения включает смесь муки пшеничной и хвойной в соотношении 10:1, смесь лактитола и цитрозы в соотношении 4:1,...
Тип: Изобретение
Номер охранного документа: 0002625568
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e17f

Поршневая машина

Изобретение предназначено для использования в машиностроении в качестве мотора, компрессора или насоса. Машина содержит корпус, в котором размещен полый приводной вал и как минимум два поршня, надетых на центральную ось с возможностью совершать относительно оси и корпуса вращательное и...
Тип: Изобретение
Номер охранного документа: 0002625606
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e1a3

Бетонная смесь

Изобретение относится к составам бетонных и растворных смесей, применяемых для изготовления стеновых блоков, ограждающих и самонесущих строительных изделий, а также для штукатурных работ и ремонта фасадов зданий. Бетонная смесь содержит цемент, заполнитель, пластификатор, гидрофобизирующую...
Тип: Изобретение
Номер охранного документа: 0002625844
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e21d

Бетонная смесь

Изобретение относится к составам бетонных и растворных смесей и может найти применение при производстве монолитных и сборных изделий и конструкций. Бетонная смесь содержит портландцемент, заполнитель, воду и комплексную добавку, включающую ускоритель твердения цемента и замедлитель твердения...
Тип: Изобретение
Номер охранного документа: 0002625842
Дата охранного документа: 19.07.2017
Показаны записи 151-160 из 226.
26.08.2017
№217.015.e1a3

Бетонная смесь

Изобретение относится к составам бетонных и растворных смесей, применяемых для изготовления стеновых блоков, ограждающих и самонесущих строительных изделий, а также для штукатурных работ и ремонта фасадов зданий. Бетонная смесь содержит цемент, заполнитель, пластификатор, гидрофобизирующую...
Тип: Изобретение
Номер охранного документа: 0002625844
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e21d

Бетонная смесь

Изобретение относится к составам бетонных и растворных смесей и может найти применение при производстве монолитных и сборных изделий и конструкций. Бетонная смесь содержит портландцемент, заполнитель, воду и комплексную добавку, включающую ускоритель твердения цемента и замедлитель твердения...
Тип: Изобретение
Номер охранного документа: 0002625842
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e49d

Способ переработки маслосодержащего сырья

Изобретение относится к масложировой промышленности. Способ переработки маслосодержащего сырья включает обезжиривание маслосодержащего сырья растворителем, удаление полученной мисцеллы, отделение обезжиренного маслосодержащего сырья. При этом в качестве маслосодержащего сырья используют...
Тип: Изобретение
Номер охранного документа: 0002625678
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e4af

Функциональная питьевая вода

Изобретение относится к области производства безалкогольных напитков, в частности питьевой воды, содержащей в своем составе натуральный растительный экстракт и биологически активные компоненты. Функциональная питьевая вода содержит следующие компоненты из расчета на 1 дм воды: 0,5-1,0 г...
Тип: Изобретение
Номер охранного документа: 0002625677
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e505

Способ получения молочного функционального продукта

Изобретение относится к пищевой промышленности, в частности к производству молочных и молокосодержащих продуктов функциональной направленности. Способ включает приемку молока-сырья, оценку его качества, охлаждение до 2-6°С, очистку, резервирование не более чем на 12 часов при температуре 2-6°С,...
Тип: Изобретение
Номер охранного документа: 0002626536
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e57a

Кондитерская функциональная смесь для печенья

Изобретение относится к производству мучных кондитерских изделий. Кондитерская функциональная смесь для печенья включает пшеничную муку, подслащивающий агент в виде сахара, масло сливочное, молоко сгущенное, соль поваренную пищевую, двууглекислый натрий, аммоний углекислый, растительную...
Тип: Изобретение
Номер охранного документа: 0002626625
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5fc

Аксиально-радиальный бесконтактный генератор переменного тока

Изобретение относится к области электротехники и может быть использовано, например, для генерирования электрической энергии. Техническим результатом является улучшение массогабаритных показателей, повышение надежности конструкции, а также упрощение способа ее изготовления. Аксиально-радиальный...
Тип: Изобретение
Номер охранного документа: 0002626814
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.ee72

Способ производства рисовой крупы

Изобретение относится к зерноперерабатывающей промышленности и может быть использовано при производстве рисовой крупы. Способ производства рисовой крупы включает очистку зерновой массы от посторонних примесей, шелушение зерна риса, разделение продуктов шелушения на шелушеный рис, нешелушеный...
Тип: Изобретение
Номер охранного документа: 0002628938
Дата охранного документа: 23.08.2017
20.11.2017
№217.015.efda

Гибридная аксиальная электрическая машина-генератор

Использование: в области электротехники. Технический результат заключается в увеличении количества и равномерности поступления электрической энергии m-фазного переменного тока, а также повышении надежности и стабильности работы энергосистемы. В гибридной аксиальной электрической...
Тип: Изобретение
Номер охранного документа: 0002629017
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f0c7

Устройство для вычисления квадратного корня

Изобретение относится к вычислительной технике, в частности к устройствам для вычисления квадратного корня из чисел, представленных в двоичной системе в форме с фиксированной запятой. Технический результат заключается в повышении быстродействия при получении результата извлечения квадратного...
Тип: Изобретение
Номер охранного документа: 0002638010
Дата охранного документа: 08.12.2017
+ добавить свой РИД