×
19.01.2018
218.016.046f

Результат интеллектуальной деятельности: Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа

Вид РИД

Изобретение

Аннотация: Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем. Предложенный способ компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного гироскопа базируется на монтаже оптически прозрачного моноблока, рабочий режим которого достигается использованием микромощного полупроводникового лазерного диода, снабженного по крайне мере одним элементом Пельтье для термостабилизации режима излучения лазерного диода, размещенного внутри оптического контура, образованного совокупностью оптических каналов лазерного гироскопа, на металлическое основание с функциями общего радиатора охлаждения. При этом в металлическом основании создаются, в количестве не менее двух на оптический канал, пазы заданной глубины и геометрии, формирующие в металлическом основании выпуклые зоны, которые находятся в тепловом контакте с нижней поверхностью многоугольного моноблока относительно источника локального нагрева - элемента Пельтье и обеспечивают зональное выравнивание градиента температуры в рабочих зонах, что обеспечивает компенсацию температурного разбаланса рабочих зон оптических каналов в количестве, равном количеству сформированных выпуклых зон, при этом контур многоугольного моноблока охвачен пазом заданной глубины и геометрии для исключения общего влияния металлического основания на температурное распределение в выпуклых зонах и обеспечения требуемого градиента температуры в зоне компенсации по отношению к локальному источнику нагрева. Технический результат способа состоит в компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного гироскопа и обеспечении его работоспособности при высоких и низких температурах окружающей среды. 3 ил.

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности в бесплатформенных инерциальных навигационных системах.

Известно техническое решение, разработанное американской фирмой «Honeywell» (Горенштейн И.А., Шульман И.А. Инерциальные навигационные системы. Под редакцией канд. техн. наук И.А. Горенштейна - Москва: Машиностроение, 1970, стр. 161-230). Конструктивно система содержит корпус, аноды, зеркала с высокой отражательной способностью, цилиндрические каналы, катод, диафрагму, полупрозрачное зеркало, призму. Корпус прибора - монолитный многоугольный блок из плавленого кварца в виде двенадцатиугольника с неправильными сторонами, в котором просверлены цилиндрические каналы. Оси этих каналов лежат в одной плоскости и образуют равносторонний треугольник, в вершинах которого расположены зеркала.

Моноблок монтируется по всей плоскости на металлическое основание с функциями радиатора охлаждения для создания датчика угловых скоростей инерциальной навигационной системы. Для улучшения теплопроводности на поверхность радиатора в зоне сопряжения с моноблоком может наноситься теплопроводная паста.

Недостаток. Так как корпус прибора выполнен в виде двенадцатиугольника с неправильными сторонами, возникает существенная температурная погрешность из-за неравномерного нагрева от источника излучения, заключающаяся в неравномерном изменении длин и диаметра оптических каналов, приводящих к изгибу и деформации оптических каналов. Это приводит к существенному сужению диапазона его работоспособности при высоких и низких температурах окружающей среды.

Применение общего радиатора охлаждения по известной схеме не решает указанной проблемы.

Наиболее близким к заявляемому устройству является моноблочная конструкция лазерного гироскопа (Заявка на изобретение РФ №2014154547 от 31.12.2014, МПК: G01C 19/66, заявитель: ОАО «Научно-производственный комплекс «ЭЛАРА» имени Г.А. Ильенко» (г. Чебоксары), Российская Федерация (RU).

Сборочный чертеж моноблочного лазерного гироскопа приведен на фиг. 1. Здесь приняты следующие обозначения:

1 - многоугольный моноблок в виде основания;

2 - оптические каналы;

3 - зеркало полного отражения лучистой энергии;

4 - полупрозрачное зеркало в виде интерференционного

преобразователя;

5 - источник оптического излучения - полупроводниковый лазер;

6 - внешний оптический резонатор;

7 - светоотражающее покрытие;

8 - оптически прозрачное отверстие внешнего оптического резонатора;

9 - продольный оптический канал внешнего оптического резонатора;

10 - термоэлектрический модуль с радиатором и элементом Пельтье;

11 - геометрический центр оптического моноблока;

12 - равносторонний правильный шестиугольник;

13 - торец шестиугольника моноблока;

14 - крепежный элемент;

15 - втулка;

16 - прижимные элементы;

17 - периферия моноблока;

18 - котировочное приспособление;

19 - втулка крепления моноблока к металлическому

основанию/радиатору.

Лазерный гироскоп содержит многоугольный оптически прозрачный моноблок 1 со сформированными оптическими каналами 2, схему оптической обвязки 3,4 для реализации эффекта Саньяка и съема информации об угловой скорости объекта 4, причем в качестве источника оптического излучения в конструкцию включен микромощный полупроводниковый лазерный диод 5. Конструктивно источник оптического излучения выполнен в виде термоэлектрического модуля 10, состоящего из внешнего радиатора и, по меньшей мере, одного элемента Пельтье, расположен в геометрическом центре оптического моноблока 1. Фактически, термоэлектрический модуль 10 является и источником нагрева моноблока, расположенным внутри оптического контура, образованного совокупностью оптических каналов 2 лазерного гироскопа. Такое конструктивное решение обеспечивает линейное температурное расширение от центра к периферии по всему объему моноблока, что исключает при малых температурных градиентах существенный изгиб и деформацию каналов моноблока и оптической обвязки: системы зеркал 3 и интерференционного преобразователя 4. В этом случае изменение внутреннего диаметра оптического канала не превышает 25-30% и не влияет на искажение оптических потоков, что обеспечивает нормальный режим оптического гироскопа.

В моноблоке предусмотрена возможность его монтажа с помощью втулок крепления 19 на металлическое основание 20 по всей плоскости с функциями общего радиатора охлаждения, входящего в состав датчика угловых скоростей инерциальной навигационной системы. Для улучшения теплопроводности на поверхность радиатора в зоне сопряжения с моноблоком может наноситься теплопроводная паста 21.

Обобщенная схема моноблочного лазерного гироскопа с точки зрения распределения температурных полей в конструкции прототипа представлена на фиг. 2. Здесь моноблок 1 размещен на металлическом основании 20 с функциями радиатора охлаждения. Термоэлектрический модуль с радиатором и элементом Пельтье представлен как элемент 10. Для улучшения теплопроводности на поверхность радиатора в зоне сопряжения с моноблоком наносится теплопроводная паста 21. В силу того, что и материал моноблока 1 (органическое стекло) и материал основания 20 (металл) обладают линейными коэффициентами теплопроводности, то середины оптических каналов 2 и их концы от источника нагрева находятся на разном удалении, что приводит к появлению существенного температурного градиента при работе в широком диапазоне температур и негативным последствиям для оптических каналов.

Недостаток. При существенных температурных градиентах, которые проявляются при работе лазерного гироскопа в широком диапазоне температур, возникает существенная разность температур в середине и на краях оптических каналов оптического контура. Это приводит к тепловому изгибу и деформации оптических каналов, превышающих 30% и, как следствие, возникновение нарушения условий распространения оптических потоков, приводящего к появлению эффекта Саньяка за счет дополнительных переотражений в каждом оптическом канале.

Применение общего радиатора охлаждения по известной схеме не решает указанной проблемы.

Технический результат изобретения состоит в разработке способа компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа и обеспечение его работоспособности при высоких и низких температурах окружающей среды.

Технический результат достигается тем, что многоугольный моноблок лазерного гироскопа монтируется на металлическое основание с функциями общего радиатора охлаждения. Рабочий режим моноблока обеспечивается применением микромощного полупроводникового лазерного диода, снабженного по крайне мере одним элементом Пельтье для термостабилизации режима излучения лазерного диода. При этом микромощный полупроводниковый лазерный диод является термоэлектрическим модулем и источником нагрева моноблока. В конструктивном плане источник нагрева фактически размещен внутри оптического контура, образованного совокупностью оптических каналов лазерного гироскопа, а сам моноблок, с целью улучшения температурного режима устройства, монтируется на металлическое основание. В первом приближении источник нагрева расположен симметрично относительно оптических каналов оптического контура моноблока.

При запуске устройства микромощный полупроводниковый лазерный диод при рабочих мощностях излучателя 100-250 мВт отдает определенное количество тепла моноблоку, выполненному, например, из органического стекла, с открытыми негерметичными оптическими каналами. Для обеспечения компенсации температурного разбаланса рабочих зон оптических каналов моноблока, а фактически - компенсации теплового изгиба и деформации оптических каналов моноблока, в металлическом основании создаются, в количестве не менее двух на оптический канал, специальные пазы заданной глубины и геометрии, которые формируют в металлическом основании выпуклые зоны. Они находятся в тепловом контакте с нижней поверхностью многоугольного моноблока относительно источника локального нагрева - элемента Пельтье и обеспечивают зональное выравнивание градиента температуры в рабочих зонах. Этим обеспечивается компенсация температурного разбаланса рабочих зон оптических каналов в количестве равном количеству сформированных выпуклых зон. Для исключения общего влияния металлического основания на температурное распределение в выпуклых зонах контур многоугольного моноблока охвачен специальным пазом заданной глубины и геометрии, что обеспечивает требуемый градиент температуры в зоне компенсации по отношению к локальному источнику нагрева.

Общими для заявляемого способа и прототипа являются следующие признаки:

- многоугольный моноблок лазерного гироскопа с оптическим контуром, сформированным по крайней мере тремя оптическими каналами;

- источником тепла для моноблока является микромошный полупроводниковый лазерный диод, снабженный по крайней мере одним элементом Пельтье для термостабилизации режима излучения лазерного диода;

- источник тепла конструктивно находится внутри оптического контура, образованного совокупностью оптических каналов;

- моноблок монтируют на металлическое основание с функциями общего радиатора охлаждения для облегчения температурного режима.

Отличительными от прототипа являются следующие признаки:

- в металлическом основании создаются, в количестве не менее двух на оптический канал, специальные пазы заданной глубины и геометрии, формирующие в металлическом основании выпуклые зоны;

- сформированные в металлическом основании выпуклые зоны находятся в тепловом контакте с нижней поверхностью многоугольного моноблока относительно источника локального нагрева - элемента Пельтье и обеспечивают зональное выравнивание градиента температуры в рабочих зонах;

- количество сформированных выпуклых зон определяет количество рабочих зон оптических каналов, где достигается компенсация температурного разбаланса;

- контур многоугольного моноблока охвачен специальным пазом заданной глубины и геометрии для исключения общего влияния металлического основания на температурное распределение в выпуклых зонах и обеспечения требуемого градиента температуры в зоне компенсации по отношению к локальному источнику нагрева. Сущность способа, его реализуемость и возможность промышленного применения поясняется обобщенной схемой моноблочного лазерного гироскопа, отражающей распределение температурных полей в конструкции, представленной на фиг. 3.

Многоугольный моноблок 1 лазерного гироскопа монтируется на металлическое основание 20 с функциями общего радиатора охлаждения. Рабочий режим моноблока обеспечивается применением микромощного полупроводникового лазерного диода, снабженного по крайне мере одним элементом Пельтье для термостабилизации режима излучения лазерного диода и являющегося термоэлектрическим модулем 10. В конструктивном плане источник нагрева фактически размещен внутри оптического контура, образованного совокупностью оптических каналов 2 лазерного гироскопа. В первом приближении источник нагрева 10 расположен симметрично относительно оптических каналов 2 оптического контура моноблока 1.

При запуске устройства микромощный полупроводниковый лазерный диод при рабочих мощностях излучателя 100-250 мВт отдает определенное количество тепла моноблоку 1, выполненному, например, из органического стекла (марки СО-120-К ГОСТ 10667-90), с открытыми негерметичными оптическими каналами 2. Для обеспечения компенсации температурного разбаланса рабочих зон оптических каналов 2 моноблока 1, а фактически -компенсации теплового изгиба и деформации оптических каналов 2 моноблока 1, в металлическом основании 20 (сплав АЛ-2 - АЛ-8) создаются, в количестве не менее двух на оптический канал, специальные пазы заданной глубины и геометрии, которые формируют в металлическом основании выпуклые зоны. Они находятся в тепловом контакте с нижней поверхностью многоугольного моноблока 1 относительно источника локального нагрева - элемента Пельтье и обеспечивают зональное выравнивание градиента температуры в рабочих зонах оптических каналов 2. Это обеспечивает компенсацию температурного разбаланса рабочих зон оптических каналов 2 в количестве равном количеству сформированных выпуклых зон. При этом контур многоугольного моноблока 1 охвачен специальным пазом заданной глубины и геометрии для исключения общего влияния металлического основания 20 на температурное распределение в выпуклых зонах, что обеспечит создание требуемого градиента температуры в зоне компенсации по отношению к локальному источнику нагрева.

Техническое решение, положенное в основу способа, явным образом не следует из уровня техники. Кроме того, в процессе патентного поиска не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками заявленного способа.

Заявленный способ имеет существенные отличия от наиболее близких аналогов и удовлетворяет критерию патентоспособности изобретения - «новизна».

Заявленный способ технически осуществим и промышленно реализуем на приборостроительном предприятии. Проведенные испытания подтверждают достижение заявленного технического результата разработанного способа - компенсация теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа и обеспечение его работоспособности при высоких и низких температурах окружающей среды.

В связи с изложенным материалы заявки на предлагаемое изобретение соответствуют критериям патентоспособности и промышленной применимости.

Способ компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного гироскопа базируется на монтаже оптически прозрачного моноблока, рабочий режим которого достигается использованием микромощного полупроводникового лазерного диода, снабженного по крайне мере одним элементом Пельтье для термостабилизации режима излучения лазерного диода, размещенного внутри оптического контура, образованного совокупностью оптических каналов лазерного гироскопа, на металлическое основание с функциями общего радиатора охлаждения, отличающийся тем, что в металлическом основании создаются, в количестве не менее двух на оптический канал, специальные пазы заданной глубины и геометрии, формирующие в металлическом основании выпуклые зоны, которые находятся в тепловом контакте с нижней поверхностью многоугольного моноблока относительно источника локального нагрева - элемента Пельтье и обеспечивают зональное выравнивание градиента температуры в рабочих зонах, что обеспечивает компенсацию температурного разбаланса рабочих зон оптических каналов в количестве, равном количеству сформированных выпуклых зон, при этом контур многоугольного моноблока охвачен специальным пазом заданной глубины и геометрии для исключения общего влияния металлического основания на температурное распределение в выпуклых зонах и обеспечения требуемого градиента температуры в зоне компенсации по отношению к локальному источнику нагрева.
Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа
Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа
Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа
Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа
Источник поступления информации: Роспатент

Показаны записи 21-30 из 251.
26.08.2017
№217.015.dc3c

Способ извлечения тирозина и витамина b из водного раствора

Изобретение относится к области аналитической химии, в частности к способу извлечения тирозина и витамина В из водных растворов. Способ включает приготовление водно-солевого раствора смеси тирозина и витамина В путем их растворения в насыщенном растворе высаливателя, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002624217
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dcc7

Несущий винт вертолета

Изобретение относится к области авиации, в частности к конструкциям несущих винтов винтокрылых летательных аппаратов. Несущий винт вертолета состоит из втулки и лопастей, каждая из которых содержит лонжерон, хвостовые отсеки, наконечник и законцовку. Концевая часть каждой лопасти в поперечном...
Тип: Изобретение
Номер охранного документа: 0002624349
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd1e

Глиссадный радиомаяк

Изобретение относится к области радионавигации, в частности к системам инструментального захода летательного аппарата на посадку, и может быть использовано при разработке радиомаячных систем посадки, предназначенных для вывода самолетов на взлетно-посадочную полосу (ВПП) аэродрома. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002624459
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e311

Способ навигации подвижного объекта

Изобретение относится к навигации и предназначено для счисления координат (определения пространственного перемещения) подвижного объекта относительно земли. Достигаемый технический результат – автоматизация измерения параметров пространственного (углового и линейного) перемещения подвижного...
Тип: Изобретение
Номер охранного документа: 0002626017
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e464

Полосовой усилитель

Изобретение относится к радиотехнике и может быть использовано в радиотехнических установках. Технический результат заключается в увеличении динамического диапазона при усилении сигналов в узком диапазоне частот за счет снижения уровня шумов. Указанный результат достигается за счет того, что в...
Тип: Изобретение
Номер охранного документа: 0002626553
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e5b5

Способ обработки сигналов в тракте высокой частоты радиоприемных устройств

Изобретение относится к средствам обработки сигналов в тракте высокой частоты радиоприемных устройств. В известных устройствах осуществляется фильтрация и усиление сигнала, а в предлагаемом способе вводятся операции усиления в пассивной цепи и суммирования сигналов с выхода усилителя на входе...
Тип: Изобретение
Номер охранного документа: 0002626662
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e740

Способ комплексного мониторинга и управления состоянием многопараметрических объектов

Изобретение относится к управлению состоянием многопараметрических объектов. В способе комплексного мониторинга и управления состоянием многопараметрического объекта измеряют параметры объекта в заданное время, допусковую оценку измеренных значений и формируют матрицы состояния. До начала...
Тип: Изобретение
Номер охранного документа: 0002627242
Дата охранного документа: 04.08.2017
26.08.2017
№217.015.e84e

Лазерный гироскоп

Лазерный гироскоп содержит многоугольный оптический моноблок со сформированными оптическими каналами, зеркала полного отражения, полупрозрачное зеркало, призму и внешний оптический резонатор для сопряжения полупроводникового лазера с оптическим моноблоком, выполненный из оптически прозрачного...
Тип: Изобретение
Номер охранного документа: 0002627566
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e955

Сопло газотурбинного двигателя летательного аппарата

Изобретение относится к области авиадвигателестроения, а именно к защите летательного аппарата с газотурбинными двигателями от поражения ракетами с тепловой головкой самонаведения. Сопло газотурбинного двигателя летательного аппарата образовано каналом переменной формы и выполнено...
Тип: Изобретение
Номер охранного документа: 0002627813
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e9d9

Способ демодуляции дискретного n-позиционного частотного сигнала

Изобретение относится к радиотехнике и предназначено для детектирования N-позиционных частотных сигналов. Технический результат - повышение разрешающей способности по частоте. Способ демодуляции дискретного N-позиционного частотного сигнала заключается в ограничении входного сигнала по...
Тип: Изобретение
Номер охранного документа: 0002628218
Дата охранного документа: 15.08.2017
Показаны записи 21-30 из 49.
26.08.2017
№217.015.dd1e

Глиссадный радиомаяк

Изобретение относится к области радионавигации, в частности к системам инструментального захода летательного аппарата на посадку, и может быть использовано при разработке радиомаячных систем посадки, предназначенных для вывода самолетов на взлетно-посадочную полосу (ВПП) аэродрома. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002624459
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e311

Способ навигации подвижного объекта

Изобретение относится к навигации и предназначено для счисления координат (определения пространственного перемещения) подвижного объекта относительно земли. Достигаемый технический результат – автоматизация измерения параметров пространственного (углового и линейного) перемещения подвижного...
Тип: Изобретение
Номер охранного документа: 0002626017
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e464

Полосовой усилитель

Изобретение относится к радиотехнике и может быть использовано в радиотехнических установках. Технический результат заключается в увеличении динамического диапазона при усилении сигналов в узком диапазоне частот за счет снижения уровня шумов. Указанный результат достигается за счет того, что в...
Тип: Изобретение
Номер охранного документа: 0002626553
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e5b5

Способ обработки сигналов в тракте высокой частоты радиоприемных устройств

Изобретение относится к средствам обработки сигналов в тракте высокой частоты радиоприемных устройств. В известных устройствах осуществляется фильтрация и усиление сигнала, а в предлагаемом способе вводятся операции усиления в пассивной цепи и суммирования сигналов с выхода усилителя на входе...
Тип: Изобретение
Номер охранного документа: 0002626662
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e740

Способ комплексного мониторинга и управления состоянием многопараметрических объектов

Изобретение относится к управлению состоянием многопараметрических объектов. В способе комплексного мониторинга и управления состоянием многопараметрического объекта измеряют параметры объекта в заданное время, допусковую оценку измеренных значений и формируют матрицы состояния. До начала...
Тип: Изобретение
Номер охранного документа: 0002627242
Дата охранного документа: 04.08.2017
26.08.2017
№217.015.e84e

Лазерный гироскоп

Лазерный гироскоп содержит многоугольный оптический моноблок со сформированными оптическими каналами, зеркала полного отражения, полупрозрачное зеркало, призму и внешний оптический резонатор для сопряжения полупроводникового лазера с оптическим моноблоком, выполненный из оптически прозрачного...
Тип: Изобретение
Номер охранного документа: 0002627566
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e955

Сопло газотурбинного двигателя летательного аппарата

Изобретение относится к области авиадвигателестроения, а именно к защите летательного аппарата с газотурбинными двигателями от поражения ракетами с тепловой головкой самонаведения. Сопло газотурбинного двигателя летательного аппарата образовано каналом переменной формы и выполнено...
Тип: Изобретение
Номер охранного документа: 0002627813
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e9d9

Способ демодуляции дискретного n-позиционного частотного сигнала

Изобретение относится к радиотехнике и предназначено для детектирования N-позиционных частотных сигналов. Технический результат - повышение разрешающей способности по частоте. Способ демодуляции дискретного N-позиционного частотного сигнала заключается в ограничении входного сигнала по...
Тип: Изобретение
Номер охранного документа: 0002628218
Дата охранного документа: 15.08.2017
26.08.2017
№217.015.ea3b

Способ вывода самолета в точку начала посадки

Изобретение относится к способу вывода самолета в точку начала посадки. Для вывода самолета в точку начала посадки измеряют текущие координаты самолета, предварительно строят участок маршрута в виде прямой линии заданного пути, являющейся касательной к дуге предпосадочного разворота самолета...
Тип: Изобретение
Номер охранного документа: 0002628043
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ea6b

Способ определения качества виноградного вина

Изобретение относится к анализу качества пищевых продуктов, а именно способу определения качества виноградного вина. Для этого проводят отбор проб, оценку показателей качества, отличающийся тем, что получают равновесную газовую фазу вина, преобразуют ее состав в электрический сигнал с...
Тип: Изобретение
Номер охранного документа: 0002628029
Дата охранного документа: 14.08.2017
+ добавить свой РИД