×
19.01.2018
218.016.046c

Результат интеллектуальной деятельности: Гидрофобный пористый керамический материал и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом CO, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом CO с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин до 24 ч, после чего проводят декомпрессию, отличающийся тем, что в качестве гидрофобного материала осаждения используют фторпарафин, при этом фторпарафин осаждают в объеме высокотемпературного пористого керамического материала, скорость декомпрессии составляет 1-60 мл/ч. Также описан гидрофобный пористый керамический материал. Технический результат: получен пористый материал с водоотталкивающей способностью. 2 н. и 1 з.п. ф-лы, 1 табл., 1 ил., 16 пр.

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием, в частности, фторпарафиновым, с использованием технологии сверхкритического СО2 (СК-CO2), которая применима для придания гидрофобных свойств пористым материалам и изделиям из керамики, что может быть использовано для создания поверхностей с уменьшенным сопротивлением водяному потоку, для защиты поверхностей и объема материалов от измороси, конденсации влаги и обледенения.

В настоящее время проблема гидрофобизации пористого керамического материала заключается в том, что при использовании существующих способов и материалов невозможно осуществить равномерное однородное нанесение гидрофобного покрытия, обеспечивающего придание пористому керамическому материалу высокогидрофобного состояния как внутри объема, так и на его поверхности.

Для получения гидрофобных керамических материалов известно применение методов пропитки или окунания в раствор жидкого гидрофобного материала (кремнийорганика), метода нанесения гидрофобного покрытия в вакууме, метода пропитки расплавов гидрофобных материалов и пр.

Из уровня техники известен высокотемпературный волокнистый теплозащитный материал, который представляет собой твердую плиту (US 5569423 А, опубл. 29.10.1996, В28В 1/52). Недостатком материала является его высокая гидрофильность, что исключает его применение в условиях повышенной влажности и воде.

Известен водоотталкивающий элемент, на поверхность которого из раствора полимера нанесено гидрофобное покрытие. Элемент выполнен в виде диска для магнитной записи (JP 2001314810 А, опубл. 13.11.2001, B05D 3/12).

Недостатком вышеописанного элемента является низкая водоотталкивающая способность, поскольку полимер конденсируется в гранулярное, неоднородное по морфологии покрытие, неспособное проникать вглубь пористой структуры.

Наиболее близким к заявляемому техническому решению является гидрофобный материал, выполненный из микропористого полиэтилена, и способ осаждения гидрофобного полимерного покрытия - ультрадисперсного политетрафторэтилена (УПТФЭ) "Форум" на его поверхность непосредственно из раствора в СК-CO2. При осуществлении способа на поверхность подложки с шероховатой поверхностью характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом СО2, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом - СО2 с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин. до 24 ч., после чего проводят декомпрессию. Модификация увеличивает значение угла смачивания водой с 88° до 135° (RU 2331532 С2, опуб. 20.08.2008, B60R 13/00).

Недостатком данного способа гидрофобизации является невысокий краевой угол смачивания водой и растворимость в СК-CO2 только низкомолекулярной части полимера. Недостатком материала полученного данным способом является гидрофобность его поверхности, а не объема, и низкая предельная температура его эксплуатации.

Техническая задача заявленного изобретения заключается в создании пористого керамического материала с температурой эксплуатации до 1700°С, обладающего повышенной водоотталкивающей способностью за счет придания ему свойств близких к супергидрофобным, т.е. увеличении угла смачивания водой его поверхностей до 150°.

Технический результат состоит в повышении водоотталкивающей способности вследствие увеличения угла смачивания водой до 150° модифицированных поверхностей пористого керамического материала с температурой эксплуатации до 1700°С.

Для достижения заявленного технического результата предложен способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом СО2, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом CO2 с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин до 24 ч, после чего проводят декомпрессию, причем в качестве гидрофобного материала осаждения используют фторпарафин, при этом фторпарафин осаждают в объеме высокотемпературного пористого керамического материала, скорость декомпрессии составляет 1-60 мл/час.

Предпочтительно, фторпарафин осаждают на высокотемпературный пористый керамический материал со сложной геометрией поверхности.

Предложен гидрофобный пористый керамический материал, на поверхность которого нанесено гидрофобное покрытие. Гидрофобное покрытие - фторпарафин нанесено на поверхность муллитокорунда или муллитокремнезема, или оксида алюминия, или оксида кремния, или оксида циркония, или оксида гафния, или оксида титана, или оксида магния, или их смеси, растворителем является сверхкритический СО2.

Достижение результата обеспечивается за счет комбинации имеющегося поверхностного рельефа пористого керамического материала и гидрофобности поверхностного слоя после осаждения тонкого и однородного гидрофобного фторпарафинового покрытия из раствора в СК-СО2. Использование СК-СО2 в качестве носителя фторпарафина позволяет осуществить глубокую и однородную модификацию пористой структуры материала, при этом в силу однородности тонкого покрытия не искажая его морфологию.

Авторами было установлено, что использование сверхкритического CO2 (СК-СО2) в качестве растворителя при формировании гидрофобных покрытий в объеме пористого керамического материала зависит от технологических режимов. Растворяющая способность СК-CO2 существенно зависит от температуры, давления и скорости декомпрессии, что позволяет реализовать оптимальную динамику процесса нанесения фторпарафиновых пленок с возможностью регулирования толщины покрытия вплоть до нанометрового диапазона. Указанные интервалы температур и давления обеспечивают оптимальные условия растворения фторпарафинов в СК-СО2.

Увеличение температуры более 200°С и давления выше 100 МПа не влияют на процесс растворения низкомолекулярных фторпарафинов в СК-СО2.

При скорости декомпрессии свыше 60 мл/час происходит неоднородное осаждение фторпарафинового покрытия в объеме пористого керамического материала, что исключает возможность получения супергидрофобного материала.

Сверхкритическая среда заполняет весь предоставленный объем (как газ) и способна проникать в открытые поры, на стенки которых из раствора будет наноситься фторпарафин.

У СО2 отсутствует жидкая фаза при атмосферном давлении, что дает возможность исключить переорганизацию осажденного на поверхность керамики фторпарафинового покрытия при уходе растворителя из-за влияния сил поверхностного натяжения. Этот же аспект позволяет решить проблему остаточного растворителя. В сверхкритической среде диффузионные процессы протекают очень быстро, что позволяет сократить время нанесения фторпарафинового покрытия. Важными достоинствами являются также нетоксичность и экологическая чистота CO2.

Материал, полученный данным способом, обладает высокой предельной температурой эксплуатации (до 1700°С) и углом смачивания водой поверхности до 150° при комнатной температуре.

Приготовленная заявляемым способом поверхность пористого керамического материала обладает меньшим сопротивлением водяному потоку за счет проскальзывания граничного слоя потока воды по фторпарафиновой поверхности. Такая поверхность в меньшей степени подвержена процессам конденсации влаги и образования измороси. Дополнительный достигаемый технический результат состоит в нанесении гидрофобного покрытия, предохраняющего от конденсации влаги и намерзания измороси как на поверхности, так и в объеме пористого керамического материала.

Изобретение изображено на фиг. 1, где приводится схема получения материала.

Высокотемпературный пористый керамический материал 3 и навеску фторпарафина помещают в реактор 2, после чего его герметизируют. Затем реактор 2 заполняют газом CO2 из баллона 4 и помещают в термостат 1. С помощью термостата 1 и генератора давления 5 устанавливают необходимые температуру (от 35 до 200°С) и давление (от 7 до 100 МПа) для перевода CO2 в сверхкритическое состояние и растворения в СК-СО2 фторпарафина. После того как раствор фторпарафинов в СК-CO2 пропитает объем массивного образца в течение заданного времени (от 15 мин до 24 ч), проводят осаждение олигомеров фторпарафина на твердые поверхности с образованием полимерного покрытия в объеме пористого материала 3: реактор 2 декомпрессируют при заданной температуре и с заданной скоростью (от 1 до 60 мл/ч), при этом образец переходит в близкое к супергидрофобному состояние (становится модифицированным). Далее реактор 2 разбирают и извлекают модифицированный пористый керамический материал 3.

Примеры осуществления.

Пример 1. В качестве материала гидрофобного покрытия, наносимого на поверхность керамики в объеме пористого материала 3, используют фторпарафин марки ППУ-90 производимого ООО «ГалоПолимер - Кирово-Чепецк». Используют СО2 степени чистоты 99,997%. В реактор 2 объемом 10 мл помещают 100 мг фторпарафина (это соответствует концентрации полимерного раствора 10 г/л) и пористый керамический материал 3 с геометрическими размерами 20×10×3 мм. Затем реактор 2 с помещенными в него фторпарафиновой навеской и пористым керамическим материалом 3 продувают газом СО2 для удаления следов воздуха и воды. Реактор 2 герметизируют и создают в нем давление CO2 20 МПа при температуре 70°С. Стабилизацию фторпарафинового раствора осуществляют в течение 3,5 часов, после чего СО2 выпускают из реактора 2 со скоростью 15 мл/час, поддерживая при этом температуру 70°С. После этого модифицированный материал 3 извлекают из реактора 2. Для оценки водоотталкивающей способности (супергидрофобных свойств) проводят измерения значений угла смачивания водой.

Пример 2. В условиях примера 1 в качестве пористого керамического материала 3 используют гидрофильный волокнистый теплозащитный материал марки ТЗМК-10, мгновенно поглощающий каплю воды при попытке определения краевого угла смачивания. После модификации угол смачивания водой составил 150°.

Пример 3. То же, что и в примерах 1 и 2, только в реактор 2 помещают 0,01 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 0,001 г/л). Реактор 2 герметизируют и создают в нем давление CO2 40 МПа при температуре 200°С. Стабилизацию раствора осуществляют в течение 15 минут. После модификации на отдельных участках образца угол смачивания водой составил 100°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточным количеством фторпарафина для придания сплошности гидрофобного покрытия и супергидрофобных свойств материалу.

Пример 4. То же, что и в примере 1, только в реактор 2 помещают 5 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 0,5 г/л). Реактор 2 герметизируют и создают в нем давление CO2 50 МПа при температуре 55°С. В качестве пористого керамического материала 3 используют гидрофильный волокнистый теплозащитный материал марки ВТИ-17, мгновенно поглощающий каплю воды при попытке определения краевого угла смачивания. После модификации угол смачивания водой составил 110°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточным количеством фторпарафина для придания сплошности гидрофобного покрытия и супергидрофобных свойств материалу.

Пример 5. То же, что и в примерах 1 и 2, только в реактор 2 помещают 1000 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 100 г/л). Реактор 2 герметизируют и создают в нем давление CO2 65 МПа при температуре 165°С. В качестве материала гидрофобного покрытия используют фторпарафин марки ППУ-110 производимого ООО «ГалоПолимер - Кирово-Чепецк». После модификации угол смачивания водой составил 150°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточном количестве фторпарафина в примере 1.

Пример 6. То же, что и в примерах 1 и 2, только в реактор 2 помещают 50 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 5 г/л). Реактор 2 герметизируют и создают в нем давление CO2 80 МПа при температуре 135°С. В качестве материала гидрофобного покрытия используют фторпарафин марки ППУ-180 производимого ООО «ГалоПолимер - Кирово-Чепецк». После модификации угол смачивания водой составил 140°.

Пример 7. То же, что и в примерах 1 и 2, только в реактор 2 помещают 700 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 70 г/л). Реактор 2 герметизируют и создают в нем давление CO2 95 МПа при температуре 185°С. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 152°. Угол смачивания по сравнению с примером 2 практически не изменился, что говорит о достаточном количестве фторпарафина в примере 1.

Пример 8. То же, что и в примерах 1 и 2, только в реактор 2 помещают 7 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 0,7 г/л). Реактор 2 герметизируют и создают в нем давление CO2 7 МПа при температуре 200°С.Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 105° на отдельных участках. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточным количеством фторпарафина для придания сплошности гидрофобного покрытия и супергидрофобных свойств материалу.

Пример 9. То же, что и в примерах 1 и 2, только в реактор 2 помещают 60 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 6 г/л). Реактор 2 герметизируют и создают в нем давление CO2 100 МПа при температуре 75°С. Декомпрессия СО2 проводится со скоростью 60 мл/час. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 130°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточной однородностью фторпарафинового покрытия вследствие высокой скорости декомпрессии.

Пример 10. То же, что и в примерах 1 и 2, только декомпрессия CO2 проводится со скоростью 1 мл/час. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 150°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточной скорости декомпрессии в примере 1.

Пример 11. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при 200°С. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 150°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточной температуре стабилизации в примере 1.

Пример 12. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при 35°С. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 123°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется неполной растворимостью фторпарафина при заданных температурах.

Пример 13. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при давлении 7 МПа: Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 112°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется неполной растворимостью фторпарафина при заданном давлении.

Пример 14. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при давлении 100 МПа. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 149°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточном давлении стабилизации в примере 1.

Пример 15. То же, что и в примерах 1 и 2, только осаждение проводят в течение 15 мин. После экспозиции модифицированный материал ТЗМК-10 3 характеризуется меньшим углом смачивания водой, чем в примере 2 (120°), что обусловлено неполной растворимостью фторпарафина и недостаточной однородностью фторпарафинового покрытия.

Пример 16. То же, что и в примерах 1 и 2, только осаждение проводят в течение 24 час. После экспозиции модифицированный материал ТЗМК-10 3 характеризуется тем же углом смачивания водой, как в примере 2 (150°), что говорит о достаточном времени осаждения в примере 1.

Свойства полученных материалов приведены в таблице.

Как видно из таблицы 1, использование заявленного способа позволяет получить высокотемпературный пористый керамический материал с температурой эксплуатации до 1700°С, обладающего повышенной водоотталкивающей способностью за счет придания ему свойств близких к супергидрофобным, т.е. увеличении угла смачивания водой его поверхностей до 150°. Растворимость полимера составляет 100%.


Гидрофобный пористый керамический материал и способ его получения
Источник поступления информации: Роспатент

Показаны записи 381-388 из 388.
12.08.2019
№219.017.bf1f

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству безуглеродистых литейных жаропрочных сплавов на основе никеля, и может быть использовано при производстве заготовок для литья изделий, преимущественно монокристаллических рабочих лопаток газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002696625
Дата охранного документа: 06.08.2019
02.10.2019
№219.017.cea0

Керамический композиционный материал и изделие, выполненное из него

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002700428
Дата охранного документа: 17.09.2019
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
Показаны записи 361-367 из 367.
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
29.05.2023
№223.018.7284

Способ обработки трансплантатов для сердечно-сосудистой хирургии с использованием суб- и сверхкритического диоксида углерода

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии. Способ обработки трансплантата включает очистку трансплантата и нанесение полиэлектролитного покрытия, при этом очистку проводят гибридным методом путем предварительной экспозиции в водном 1 % растворе SDS, насыщенном...
Тип: Изобретение
Номер охранного документа: 0002796364
Дата охранного документа: 22.05.2023
+ добавить свой РИД