×
19.01.2018
218.016.046c

Результат интеллектуальной деятельности: Гидрофобный пористый керамический материал и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом CO, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом CO с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин до 24 ч, после чего проводят декомпрессию, отличающийся тем, что в качестве гидрофобного материала осаждения используют фторпарафин, при этом фторпарафин осаждают в объеме высокотемпературного пористого керамического материала, скорость декомпрессии составляет 1-60 мл/ч. Также описан гидрофобный пористый керамический материал. Технический результат: получен пористый материал с водоотталкивающей способностью. 2 н. и 1 з.п. ф-лы, 1 табл., 1 ил., 16 пр.

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием, в частности, фторпарафиновым, с использованием технологии сверхкритического СО2 (СК-CO2), которая применима для придания гидрофобных свойств пористым материалам и изделиям из керамики, что может быть использовано для создания поверхностей с уменьшенным сопротивлением водяному потоку, для защиты поверхностей и объема материалов от измороси, конденсации влаги и обледенения.

В настоящее время проблема гидрофобизации пористого керамического материала заключается в том, что при использовании существующих способов и материалов невозможно осуществить равномерное однородное нанесение гидрофобного покрытия, обеспечивающего придание пористому керамическому материалу высокогидрофобного состояния как внутри объема, так и на его поверхности.

Для получения гидрофобных керамических материалов известно применение методов пропитки или окунания в раствор жидкого гидрофобного материала (кремнийорганика), метода нанесения гидрофобного покрытия в вакууме, метода пропитки расплавов гидрофобных материалов и пр.

Из уровня техники известен высокотемпературный волокнистый теплозащитный материал, который представляет собой твердую плиту (US 5569423 А, опубл. 29.10.1996, В28В 1/52). Недостатком материала является его высокая гидрофильность, что исключает его применение в условиях повышенной влажности и воде.

Известен водоотталкивающий элемент, на поверхность которого из раствора полимера нанесено гидрофобное покрытие. Элемент выполнен в виде диска для магнитной записи (JP 2001314810 А, опубл. 13.11.2001, B05D 3/12).

Недостатком вышеописанного элемента является низкая водоотталкивающая способность, поскольку полимер конденсируется в гранулярное, неоднородное по морфологии покрытие, неспособное проникать вглубь пористой структуры.

Наиболее близким к заявляемому техническому решению является гидрофобный материал, выполненный из микропористого полиэтилена, и способ осаждения гидрофобного полимерного покрытия - ультрадисперсного политетрафторэтилена (УПТФЭ) "Форум" на его поверхность непосредственно из раствора в СК-CO2. При осуществлении способа на поверхность подложки с шероховатой поверхностью характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом СО2, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом - СО2 с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин. до 24 ч., после чего проводят декомпрессию. Модификация увеличивает значение угла смачивания водой с 88° до 135° (RU 2331532 С2, опуб. 20.08.2008, B60R 13/00).

Недостатком данного способа гидрофобизации является невысокий краевой угол смачивания водой и растворимость в СК-CO2 только низкомолекулярной части полимера. Недостатком материала полученного данным способом является гидрофобность его поверхности, а не объема, и низкая предельная температура его эксплуатации.

Техническая задача заявленного изобретения заключается в создании пористого керамического материала с температурой эксплуатации до 1700°С, обладающего повышенной водоотталкивающей способностью за счет придания ему свойств близких к супергидрофобным, т.е. увеличении угла смачивания водой его поверхностей до 150°.

Технический результат состоит в повышении водоотталкивающей способности вследствие увеличения угла смачивания водой до 150° модифицированных поверхностей пористого керамического материала с температурой эксплуатации до 1700°С.

Для достижения заявленного технического результата предложен способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом СО2, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом CO2 с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин до 24 ч, после чего проводят декомпрессию, причем в качестве гидрофобного материала осаждения используют фторпарафин, при этом фторпарафин осаждают в объеме высокотемпературного пористого керамического материала, скорость декомпрессии составляет 1-60 мл/час.

Предпочтительно, фторпарафин осаждают на высокотемпературный пористый керамический материал со сложной геометрией поверхности.

Предложен гидрофобный пористый керамический материал, на поверхность которого нанесено гидрофобное покрытие. Гидрофобное покрытие - фторпарафин нанесено на поверхность муллитокорунда или муллитокремнезема, или оксида алюминия, или оксида кремния, или оксида циркония, или оксида гафния, или оксида титана, или оксида магния, или их смеси, растворителем является сверхкритический СО2.

Достижение результата обеспечивается за счет комбинации имеющегося поверхностного рельефа пористого керамического материала и гидрофобности поверхностного слоя после осаждения тонкого и однородного гидрофобного фторпарафинового покрытия из раствора в СК-СО2. Использование СК-СО2 в качестве носителя фторпарафина позволяет осуществить глубокую и однородную модификацию пористой структуры материала, при этом в силу однородности тонкого покрытия не искажая его морфологию.

Авторами было установлено, что использование сверхкритического CO2 (СК-СО2) в качестве растворителя при формировании гидрофобных покрытий в объеме пористого керамического материала зависит от технологических режимов. Растворяющая способность СК-CO2 существенно зависит от температуры, давления и скорости декомпрессии, что позволяет реализовать оптимальную динамику процесса нанесения фторпарафиновых пленок с возможностью регулирования толщины покрытия вплоть до нанометрового диапазона. Указанные интервалы температур и давления обеспечивают оптимальные условия растворения фторпарафинов в СК-СО2.

Увеличение температуры более 200°С и давления выше 100 МПа не влияют на процесс растворения низкомолекулярных фторпарафинов в СК-СО2.

При скорости декомпрессии свыше 60 мл/час происходит неоднородное осаждение фторпарафинового покрытия в объеме пористого керамического материала, что исключает возможность получения супергидрофобного материала.

Сверхкритическая среда заполняет весь предоставленный объем (как газ) и способна проникать в открытые поры, на стенки которых из раствора будет наноситься фторпарафин.

У СО2 отсутствует жидкая фаза при атмосферном давлении, что дает возможность исключить переорганизацию осажденного на поверхность керамики фторпарафинового покрытия при уходе растворителя из-за влияния сил поверхностного натяжения. Этот же аспект позволяет решить проблему остаточного растворителя. В сверхкритической среде диффузионные процессы протекают очень быстро, что позволяет сократить время нанесения фторпарафинового покрытия. Важными достоинствами являются также нетоксичность и экологическая чистота CO2.

Материал, полученный данным способом, обладает высокой предельной температурой эксплуатации (до 1700°С) и углом смачивания водой поверхности до 150° при комнатной температуре.

Приготовленная заявляемым способом поверхность пористого керамического материала обладает меньшим сопротивлением водяному потоку за счет проскальзывания граничного слоя потока воды по фторпарафиновой поверхности. Такая поверхность в меньшей степени подвержена процессам конденсации влаги и образования измороси. Дополнительный достигаемый технический результат состоит в нанесении гидрофобного покрытия, предохраняющего от конденсации влаги и намерзания измороси как на поверхности, так и в объеме пористого керамического материала.

Изобретение изображено на фиг. 1, где приводится схема получения материала.

Высокотемпературный пористый керамический материал 3 и навеску фторпарафина помещают в реактор 2, после чего его герметизируют. Затем реактор 2 заполняют газом CO2 из баллона 4 и помещают в термостат 1. С помощью термостата 1 и генератора давления 5 устанавливают необходимые температуру (от 35 до 200°С) и давление (от 7 до 100 МПа) для перевода CO2 в сверхкритическое состояние и растворения в СК-СО2 фторпарафина. После того как раствор фторпарафинов в СК-CO2 пропитает объем массивного образца в течение заданного времени (от 15 мин до 24 ч), проводят осаждение олигомеров фторпарафина на твердые поверхности с образованием полимерного покрытия в объеме пористого материала 3: реактор 2 декомпрессируют при заданной температуре и с заданной скоростью (от 1 до 60 мл/ч), при этом образец переходит в близкое к супергидрофобному состояние (становится модифицированным). Далее реактор 2 разбирают и извлекают модифицированный пористый керамический материал 3.

Примеры осуществления.

Пример 1. В качестве материала гидрофобного покрытия, наносимого на поверхность керамики в объеме пористого материала 3, используют фторпарафин марки ППУ-90 производимого ООО «ГалоПолимер - Кирово-Чепецк». Используют СО2 степени чистоты 99,997%. В реактор 2 объемом 10 мл помещают 100 мг фторпарафина (это соответствует концентрации полимерного раствора 10 г/л) и пористый керамический материал 3 с геометрическими размерами 20×10×3 мм. Затем реактор 2 с помещенными в него фторпарафиновой навеской и пористым керамическим материалом 3 продувают газом СО2 для удаления следов воздуха и воды. Реактор 2 герметизируют и создают в нем давление CO2 20 МПа при температуре 70°С. Стабилизацию фторпарафинового раствора осуществляют в течение 3,5 часов, после чего СО2 выпускают из реактора 2 со скоростью 15 мл/час, поддерживая при этом температуру 70°С. После этого модифицированный материал 3 извлекают из реактора 2. Для оценки водоотталкивающей способности (супергидрофобных свойств) проводят измерения значений угла смачивания водой.

Пример 2. В условиях примера 1 в качестве пористого керамического материала 3 используют гидрофильный волокнистый теплозащитный материал марки ТЗМК-10, мгновенно поглощающий каплю воды при попытке определения краевого угла смачивания. После модификации угол смачивания водой составил 150°.

Пример 3. То же, что и в примерах 1 и 2, только в реактор 2 помещают 0,01 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 0,001 г/л). Реактор 2 герметизируют и создают в нем давление CO2 40 МПа при температуре 200°С. Стабилизацию раствора осуществляют в течение 15 минут. После модификации на отдельных участках образца угол смачивания водой составил 100°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточным количеством фторпарафина для придания сплошности гидрофобного покрытия и супергидрофобных свойств материалу.

Пример 4. То же, что и в примере 1, только в реактор 2 помещают 5 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 0,5 г/л). Реактор 2 герметизируют и создают в нем давление CO2 50 МПа при температуре 55°С. В качестве пористого керамического материала 3 используют гидрофильный волокнистый теплозащитный материал марки ВТИ-17, мгновенно поглощающий каплю воды при попытке определения краевого угла смачивания. После модификации угол смачивания водой составил 110°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточным количеством фторпарафина для придания сплошности гидрофобного покрытия и супергидрофобных свойств материалу.

Пример 5. То же, что и в примерах 1 и 2, только в реактор 2 помещают 1000 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 100 г/л). Реактор 2 герметизируют и создают в нем давление CO2 65 МПа при температуре 165°С. В качестве материала гидрофобного покрытия используют фторпарафин марки ППУ-110 производимого ООО «ГалоПолимер - Кирово-Чепецк». После модификации угол смачивания водой составил 150°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточном количестве фторпарафина в примере 1.

Пример 6. То же, что и в примерах 1 и 2, только в реактор 2 помещают 50 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 5 г/л). Реактор 2 герметизируют и создают в нем давление CO2 80 МПа при температуре 135°С. В качестве материала гидрофобного покрытия используют фторпарафин марки ППУ-180 производимого ООО «ГалоПолимер - Кирово-Чепецк». После модификации угол смачивания водой составил 140°.

Пример 7. То же, что и в примерах 1 и 2, только в реактор 2 помещают 700 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 70 г/л). Реактор 2 герметизируют и создают в нем давление CO2 95 МПа при температуре 185°С. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 152°. Угол смачивания по сравнению с примером 2 практически не изменился, что говорит о достаточном количестве фторпарафина в примере 1.

Пример 8. То же, что и в примерах 1 и 2, только в реактор 2 помещают 7 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 0,7 г/л). Реактор 2 герметизируют и создают в нем давление CO2 7 МПа при температуре 200°С.Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 105° на отдельных участках. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточным количеством фторпарафина для придания сплошности гидрофобного покрытия и супергидрофобных свойств материалу.

Пример 9. То же, что и в примерах 1 и 2, только в реактор 2 помещают 60 мг фторпарафина (что при растворении навески соответствует концентрации полимерного раствора 6 г/л). Реактор 2 герметизируют и создают в нем давление CO2 100 МПа при температуре 75°С. Декомпрессия СО2 проводится со скоростью 60 мл/час. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 130°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется недостаточной однородностью фторпарафинового покрытия вследствие высокой скорости декомпрессии.

Пример 10. То же, что и в примерах 1 и 2, только декомпрессия CO2 проводится со скоростью 1 мл/час. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 150°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточной скорости декомпрессии в примере 1.

Пример 11. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при 200°С. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 150°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточной температуре стабилизации в примере 1.

Пример 12. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при 35°С. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 123°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется неполной растворимостью фторпарафина при заданных температурах.

Пример 13. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при давлении 7 МПа: Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 112°. Уменьшение значения угла смачивания по сравнению с примером 2 объясняется неполной растворимостью фторпарафина при заданном давлении.

Пример 14. То же, что и в примерах 1 и 2, только стабилизацию фторпарафинового раствора осуществляют при давлении 100 МПа. Модифицированный материал ТЗМК-10 3 характеризуется углом смачивания водой 149°. Угол смачивания по сравнению с примером 2 не изменился, что говорит о достаточном давлении стабилизации в примере 1.

Пример 15. То же, что и в примерах 1 и 2, только осаждение проводят в течение 15 мин. После экспозиции модифицированный материал ТЗМК-10 3 характеризуется меньшим углом смачивания водой, чем в примере 2 (120°), что обусловлено неполной растворимостью фторпарафина и недостаточной однородностью фторпарафинового покрытия.

Пример 16. То же, что и в примерах 1 и 2, только осаждение проводят в течение 24 час. После экспозиции модифицированный материал ТЗМК-10 3 характеризуется тем же углом смачивания водой, как в примере 2 (150°), что говорит о достаточном времени осаждения в примере 1.

Свойства полученных материалов приведены в таблице.

Как видно из таблицы 1, использование заявленного способа позволяет получить высокотемпературный пористый керамический материал с температурой эксплуатации до 1700°С, обладающего повышенной водоотталкивающей способностью за счет придания ему свойств близких к супергидрофобным, т.е. увеличении угла смачивания водой его поверхностей до 150°. Растворимость полимера составляет 100%.


Гидрофобный пористый керамический материал и способ его получения
Источник поступления информации: Роспатент

Показаны записи 321-330 из 388.
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3102

Стеклокерамический композиционный материал

Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С,...
Тип: Изобретение
Номер охранного документа: 0002412135
Дата охранного документа: 20.02.2011
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a94

Состав для покрытия по металлу

Изобретение относится к области полимерных композиций на эпоксидной основе. Предложен состав для защиты внутренней поверхности топливных баков-кессонов летательных аппаратов, изготовленных из алюминиевых сплавов, от коррозии при длительной эксплуатации в среде топлива и может также применяться...
Тип: Изобретение
Номер охранного документа: 0002260610
Дата охранного документа: 20.09.2005
09.05.2019
№219.017.4aa9

Способ получения элемента соплового аппарата турбины и соплового аппарата турбины

Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента соплового аппарата, состоящую из стартовой и лопаточной частей. Стартовую часть модели изготавливают в виде двух пластин в...
Тип: Изобретение
Номер охранного документа: 0002265496
Дата охранного документа: 10.12.2005
Показаны записи 321-330 из 367.
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
20.05.2019
№219.017.5c7a

Препрег

Изобретение относится к области создания высокопрочных полимерных композиционных материалов конструкционного назначения на основе волокнистых арамидных наполнителей в виде нитей, жгутов, тканей и полимерных связующих, которые могут быть использованы в различных областях техники (машино-,...
Тип: Изобретение
Номер охранного документа: 0002687926
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c9e

Полимерный композиционный материал с интегрированным вибропоглощающим слоем

Изобретение относится к слоистым полимерным композиционным материалам (ПКМ) с повышенными вибропоглощающими свойствами и может быть использовано для снижения вибрации и структурного шума в малонагруженных элементах конструкции изделий авиационной техники. Полимерный композиционный материал с...
Тип: Изобретение
Номер охранного документа: 0002687938
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.66d0

Водоотталкивающий элемент и способ получения гидрофобного покрытия

Изобретение относится к области формирования покрытий. Способ получения гидрофобного покрытия заключается в том, что на поверхность подложки осаждают гидрофобный полимер или сополимер. Гидрофобный полимер или сополимер осаждают на подложку с негладкой поверхностью, характеризующейся...
Тип: Изобретение
Номер охранного документа: 0002331532
Дата охранного документа: 20.08.2008
31.05.2019
№219.017.7045

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до...
Тип: Изобретение
Номер охранного документа: 0002689947
Дата охранного документа: 29.05.2019
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
+ добавить свой РИД