×
19.01.2018
218.016.03c7

Результат интеллектуальной деятельности: Теплотрубная гелиотермоэлектростанция

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэлектроэнергетике и может быть использовано для прямой трансформации тепловой энергии в электрическую. Теплотрубная гелиотермоэлектростанция включает поддон с отверстием в днище, закрытый сверху крышкой, покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом заглушенной снизу вертикальной трубы, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная также пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых заполнено пористым материалом, внутри каждого гофра вертикальной трубы размещены вертикальные пазы длиной L, в которые вставлены вертикальные термоэлектрические преобразователи, в массиве которых помещена контурная арматура, состоящая из термоэмиссионных элементов. Изобретение должно обеспечить повышение эффективности и надежности станции. 10 ил.

Предлагаемое изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и тепловой энергии природных источников, а именно для прямой трансформации тепловой энергии в электрическую.

Известна термоэмиссионная система электроснабжения здания, содержащая: наружные ограждения, кровельное покрытие, покрытые снаружи декоративными ограждениями, состоящими из секций, каждая из которых представляет собой термоэлектрический преобразователь, состоящий из прямоугольного полого корпуса, выполненного из материала–диэлектрика с высокой теплопроводностью, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, устроенные таким образом, что левые и правые части проволочных отрезков со спаянными концами согнуты под углом 90° и располагаются в слоях материала– диэлектрика крышки и днища, параллельно их поверхности не касаясь ее, а средние части парных проволочных отрезков расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором [Патент РФ №2499107, МПК E04C 2/26, E04D 13/00, 2013].

Основными недостатками известного термоэлектрического преобразователя термоэмиссионной системы электроснабжения здания являются невозможность использования солнечной энергии и зигзагообразная компоновка термоэмиссионных элементов с изгибом их спаев под углом 90° и обусловленное этим малое количество термоэмиссионных элементов на единице его площади, что снижает удельную производительность по выработке термоэлектричества и эффективность устройства.

Более близким к предлагаемому изобретению является гелиотермоэмиссионная система электроснабжения здания, включающая кровельное покрытие (крышу) и декоративные ограждения, состоящие из прямоугольных секций, каждая из которых представляет собой фототермоэлектрический преобразователь, состоящий из фотоэлемента, присоединенного своей тыльной стороной к наружной стороне корпуса термоэлектрического преобразователя, тыльная сторона которого снабжена вертикальными ребрами, выполненного из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из элементов термоэлектрического преобразователя, представляющих собой парные проволочные отрезки, выполненные из разных металлов, спаянные на концах между собой, образуя зигзагообразные ряды, устроенные таким образом, что левые части проволочных отрезков с левыми спаянными концами согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а правые части проволочных отрезков с правыми спаянными концами расположены в массиве ребер, крайние проволочные отрезки крайних зигзагообразных рядов термоэлектрических преобразователей и выходные клеммы фотоэлементов соединены через соответствующие однополюсные коллекторы электрических зарядов с накопительным блоком [Патент РФ №2507353, МПК E04C 2/26, 2014].

Основными недостатками известной гелиотермоэмиссионной системы электроснабжения здания являются недостаточное охлаждение фотоэлементов, ведущее к снижению их производительности и высокое электрическое сопротивление термоэлектрических преобразователей, обусловленные зигзагообразным устройством рядов термоэлектрических преобразователей, сгибом левых частей проволочных отрезков термоэлектрических преобразователей под углом 90°, что приводит к увеличению длины вышеупомянутых проволочных отрезков и уменьшению удельного количества термоэлектрических преобразователей в единице площади источника электроснабжения, а также прямое соединение термоэлектрических преобразователей с коллекторами электрических зарядов, что также увеличивает электрическое сопротивление и, в конечном итоге, уменьшает эффективность и надежность устройства.

Техническим результатом предлагаемого изобретения являются повышение эффективности и надежности теплотрубной гелиотермоэлектростанции.

Технический результат достигается теплотрубной гелиотермоэлектростанцией, включающей поддон с отверстием в днище, закрытый сверху крышкой, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, при этом отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, верхний и нижний торцы подъемной трубы отступают от нижнего торца вертикальной трубы и внутренней поверхности крышки поддона на расстояние ∆, образуя щели, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком и потребителем.

На фиг. 1–10 представлена теплотрубная гелиотермоэлектростанция (ТТГТЭС): фиг. 1–5 – общий вид и разрез ТТГТЭС; фиг. 6 – узел стыковки торца трубы 9 с торцом 8 трубы 7; фиг. 7 – термоэлектрический преобразователь (ТЭП); фиг. 8–10 – основные узлы ТТГТЭС и ТЭП.

Предлагаемая теплотрубная гелиотермоэлектростанция (ТТГТЭС) содержит поддон 1 с отверстием 2 в днище, закрытый сверху крышкой 3, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами 4, внутренняя сторона которой покрыта решеткой 5, выполненной из полос пористого материала 6, при этом отверстие 2 соединено с вертикальной трубой 7 с заглушенным нижним торцом 8, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба 9, заполненная пористым материалом 6, верхний и нижний торцы которой отступают от нижнего торца 8 вертикальной трубы 7 и внутренней поверхности крышки 3 на расстояние ∆, образуя щель 10, пространство которой также заполнено пористым материалом 6, соприкасающимся с нижним торцов 8 внизу и решеткой 5 вверху, причем стенка вертикальной трубы 7 на высоту Н1 выполнена с вертикальными гофрами 11, внутри каждого гофра 11 размещены вертикальные пазы 12 длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь (ТЭП) 13, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов ТЭЭ 14, представляющих собой парные проволочные отрезки 15 и 16, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи 17 согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя (ТЭП) 13 параллельно ей, не касаясь ее, а сами проволочные отрезки 15 и 16 расположены параллельно друг другу, образуя П–образные ряды 18, нижние крайние проволочные отрезки 15 и 16 каждой пары П–образных рядов 18 ТЭП 13, соединены между собой перемычками 19, сверху каждая пара П–образных рядов 18, соединены между собой через электрические конденсаторы 20, первый и последний из которых и фотоэлементы 4 соединены с выходными коллекторами 21 и 22, накопительным блоком и потребителем (на фиг. 1–10 не показаны).

В основу работы предлагаемой ТТГТЭС положено свойство фотоэлементов 4 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [А. с. СССР №1603152, МПК F24J 2/32, 1990], а также способность транспортировки жидкости фитилем (пористым материалом 6) за счет капиллярных сил из зоны пониженного давления в зону повышенного давления и высокая эффективность передачи теплоты в тепловых трубах, покрытых изнутри фитилем (пористым материалом 6) и частично заполненных рабочей жидкостью-переносчиком теплоты, которые делятся на три участка: зона испарения (подвода теплоты фотоэлементов 4 на внутренней поверхности крышки 3), адиабатная зона (переноса теплоты – полость трубы 7) и зона конденсации (отвода теплоты – боковая поверхность трубы 7) [В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с. 146; Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. – М.: 1990, с. 106]. Кроме того, изготовление контурной арматуры ТЭП 13 в виде П–образных рядов 18, состоящих из парных проволочных отрезков 15 и 16, выполненных из разных металлов М1 и М2, спаянных на концах между собой, то при нагреве внутренних спаев 17 проволочных отрезков 15 и 16 ТЭЭ 14 ТЭП 13 конденсирующимся паром рабочей жидкости и охлаждении противоположных им спаев 17 снаружи, обращенных к холодному грунту, на них устанавливаются разные температуры, в результате чего в П–образных рядах 18 появляется термоэлектричество [С.Г. Калашников. Электричество. – М.: «Наука», 1970, с. 502–506]. Компоновка ТТГТЭС (сверху – фотоэлемент 4, снизу – крышка 3) позволяет одновременно производить съем тепла с фотоэлементов 4, увеличивая эффективность их работы, и испарять рабочую жидкость, пар которой нагревает при своей конденсации спаи 16 ТЭЭ 14, генерируя термоэлектричество. При этом, П–образное расположение ТЭЭ 14 в рядах 18 ТЭП 13 позволяет значительно увеличить их удельное количество, приходящееся на единицу поверхности трубы 7, а параллельное расположение спаев 17, относительно наружной поверхности ТЭП 12 увеличивает площадь контакта спаев 17 с охлаждаемой (нагреваемой) поверхностями, что интенсифицирует процесс теплообмена между противоположными спаями 17. Кроме того, соединение ТЭП 13 вертикальных рядов 18 между собой последовательно через электрические конденсаторы 20 и с выходными коллекторами 21, 22 снижает электрическое сопротивление при генерировании термоэлектричества.

ТТГТЭС предназначена для южных регионов с длительным количеством солнечных дней в году и работает следующим образом. Предварительно осуществляют подготовку скважины соответствующего диаметра и глубины, в месте, хорошо освещаемым солнцем, после чего ТТГТЭС вставляют в скважину и соединяют с накопительным блоком и потребителем (на фиг.1–10 не показаны). Если ТТГТЭС устанавливают в водоеме, то в этом случае его крепят к поплавкам (на фиг. 1–10 не показаны).

В дневной период фотоэлементы 4 сверху нагреваются солнечными лучами, генерируя электричество, а выделяемое тепло удаляется снизу через крышку 3, на внутренней поверхности которой испаряется рабочая жидкость. Последняя транспортируется снизу от нижнего торца 8 трубы 7 подъемной трубой 9, заполненной пористым материалом 6, распределяется по внутренней поверхности крышки 3 решеткой 5, также выполненной из пористого материала 6, нагревается до температуры кипения и испаряется при температуре tП, затрачивая тепло, выделившееся в результате генерации электричества. Полученный насыщенный пар c температурой tП движется вниз по кольцевой полости трубы 7, контактируя при этом с внутренней поверхностью ТЭП 13, нагревая внутренние спаи 17 проволочных отрезков 15 и 16 ТЭЭ 14 ТЭП 13 до температуры t1. Одновременно, поверхность ТЭП 13, обращенная к грунту (воде), охлаждается в результате контакта гофра 11с поверхностью грунта. При этом, тепло, выделяющееся в результате работы фотоэлементов 4 от солнечных лучей, в конечном итоге, тратится на нагрев внутренних спаев 16 ТЭЭ 13, а холод, поступающий от грунта (воды) охлаждает нижние спаи 9 этих же ТЭЭ 14 до температуры t2, в результате чего на противоположных спаях 17 возникает разность температур (t1–t2) и в П–образных рядах 18 появляется термоэлектричество, которое суммируется в конденсаторах 20. Полученная под воздействием солнечных лучей электрическая энергия из фотоэлементов 4 и термоэлектричество из ТЭП 13 через коллекторы 21 и 22, поступает в накопительный блок и далее к потребителю (на фиг. 1–10 не показаны).

Место установки ТТГТЭС должно быть хорошо освещаемым солнцем, а глубину скважины находят, исходя из глубины минимальной температуры грунта. Количество фотоэлементов 4, размеры поддона 1 и крышки 3, диаметр и длина трубы 7, глубина ее погружения в грунт Н и длину вертикальных пазов L1 определяют в зависимости от наружных условий места установки ТТГТЭС (температуры, солнечного освещения, вида наружного грунта) и требуемой мощности. Величина разности электрического потенциала на коллекторах 21 и 22, сила электрического тока зависит от характеристик фотоэлементов 4, продолжительности и интенсивности солнечного облучения, характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 15 и 16, числа ТЭЭ 14 в П–образных рядах 18 и их числа в ТЭП 13, разности температур на противоположных спаях 17 ТЭЭ 14, числа ТЭП 13 в трубе 7. Полученный электрический ток можно использовать для обслуживания различных технических устройств, а также обогрева и освещения жилых и производственных помещений.

Таким образом, предлагаемая ТТГТЭС обеспечивает утилизацию солнечной энергии и холода грунта или воды с получением электрической энергии, которую можно использовать для обслуживания различных технических устройств, обогрева и освещения жилых и производственных помещений без затраты топлива, загрязнения окружающей среды, создания шумового эффекта и выделения теплового излучения, что, в конечном счете, повышает эффективность и надежность работы электростанции.

Теплотрубная гелиотермоэлектростанция, включающая крышку, на которой помещены фотоэлементы, термоэлектрические преобразователи, выполненные из диэлектрического материала с высокой теплопроводностью, в массиве каждого из которых устроена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, выходные коллекторы, соединенные с накопительным блоком и потребителем, отличающаяся тем, что крышка выполнена из материала с высокой тепловодностью и закрывает поддон с отверстием в днище, внутренняя сторона крышки покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом вертикальной трубы внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой параллельные парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых соединены с выходными коллекторами.
Теплотрубная гелиотермоэлектростанция
Теплотрубная гелиотермоэлектростанция
Теплотрубная гелиотермоэлектростанция
Источник поступления информации: Роспатент

Показаны записи 81-90 из 450.
10.04.2015
№216.013.3e4b

Экструдер пресса для изготовления макаронных изделий улучшенного качества

Изобретение относится к пищевой промышленности и может быть использовано в устройствах для изготовления макаронных изделий. Экструдер содержит в корпусе шнек с выходным валом привода с одной стороны и формующим устройством с другой стороны. Винтовая поверхность шнека разделена на три ступени....
Тип: Изобретение
Номер охранного документа: 0002547435
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41bb

Теплообменник

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах, преимущественно в кожухотрубных воздухоподогревателях котельных агрегатов. Изобретение заключается в том, что теплообменник содержит теплообменную поверхность, которую с наружной стороны покрывают...
Тип: Изобретение
Номер охранного документа: 0002548325
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4886

Устройство для термоэлектрической защиты трубопровода от коррозии

Изобретение относится к оборудованию для систем защиты подземных и подводных трубопроводов от коррозии. Устройство содержит источник питания, соединенный кабелями с участком защищаемого трубопровода и анодным заземлителем, при этом оно содержит блок управления, соединенный через регулирующий...
Тип: Изобретение
Номер охранного документа: 0002550073
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4985

Мобильный уличный кондиционер

Изобретение относится к энергетике, а именно к кондиционированию и, в частности, к способам и устройствам для очистки уличного воздуха от вредных компонентов отработавших газов автомобильного транспорта. Мобильный уличный кондиционер содержит прямоугольный корпус, закрытый крышей, поддон,...
Тип: Изобретение
Номер охранного документа: 0002550328
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b04

Панель для дополнительной теплоизоляции стен

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия...
Тип: Изобретение
Номер охранного документа: 0002550711
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c13

Способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов

Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения параметров фазового перехода в воде и влияния на них условий (давление, температура), добавок веществ и полей. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002550989
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4caa

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Предлагается электрический ракетный двигатель небольшой мощности в качестве корректирующего для космического аппарата многолетнего использования с применением вместо газообразной составляющей твердого топлива в виде...
Тип: Изобретение
Номер охранного документа: 0002551140
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4f7d

Абонентский ввод системы теплоснабжения здания

Изобретение относится к технике теплоснабжения, а именно к централизованному теплоснабжению жилых и промышленных зданий. Абонентский ввод системы теплоснабжения здания, содержащий подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора и нагревательные приборы,...
Тип: Изобретение
Номер охранного документа: 0002551867
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.505c

Энергосберегающая система регулирования параметров приточного воздуха

Предлагаемое изобретение относится к строительству и может быть использовано для предварительного подогрева и охлаждения приточного воздуха в системах вентиляции и кондиционирования в зимний и летний периоды, соответственно. Энергосберегающая система регулирования параметров приточного воздуха...
Тип: Изобретение
Номер охранного документа: 0002552093
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.5900

Термокамера для испытания электронных изделий

Использование: для климатических испытаний готовых полупроводниковых приборов при одновременном измерении их электрических параметров. Сущность изобретения заключается в том, что термокамера содержит корпус, в котором размещена рабочая камера, вентилятор, узел очистки рециркуляционного...
Тип: Изобретение
Номер охранного документа: 0002554325
Дата охранного документа: 27.06.2015
Показаны записи 81-90 из 285.
13.01.2017
№217.015.6a48

Стеклоблочный воздухоподогреватель-электрогенератор

Изобретение относится к теплоэнергетике и может быть использовано при нагревании воздуха, подаваемого на горение. Техническим результатом изобретения является повышение эффективности стеклоблочного воздухоподогревателя-электрогенератора за счет конструкции стеклоблоков имеющих...
Тип: Изобретение
Номер охранного документа: 0002592938
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6d5d

Способ получения магнитной жидкости

Изобретение может быть использовано при получении магнитно-жидкостных уплотнений вращающихся валов, магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. При получении магнитной жидкости из оксидгидроксида железа (III) или гетита и олеиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002597376
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d91

Способ оперативного определения угловых элементов внешнего ориентирования космического сканерного снимка

Изобретение относится к области фотограмметрии и может быть использовано в задачах фотограмметрической обработки космических сканерных снимков для оперативного определения их угловых элементов внешнего ориентирования. Технический результат - повышение точности приближенно известных параметров...
Тип: Изобретение
Номер охранного документа: 0002597024
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6db5

Обогреватель-электрогенератор для газораспределительного пункта

Предлагаемое изобретение относится к газоснабжению и может быть использовано для обогрева и электроснабжения основного оборудования газораспределительных пунктов и газораспределительных станций путем трансформации энергии давления транспортируемого газа в тепловую, а тепловую в электрическую....
Тип: Изобретение
Номер охранного документа: 0002597327
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6eeb

Способ получения нанопорошка меди из отходов

Изобретение относится к порошковой металлургии. Способ получения нанопорошка меди из отходов электротехнической медной проволоки, содержащих не менее 99,5% меди, включает их электроэрозионное диспергирование в дистиллированной воде при частоте следования импульсов 100-120 Гц, напряжении на...
Тип: Изобретение
Номер охранного документа: 0002597445
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6efd

Экспресс-способ выбора параметров шлифования обрабатываемого материала микрорезанием единичным зерном в металлической связке

Изобретение относится к обработке материалов резанием. Способ включает закрепление детали на координатном столе под объективом оптического устройства, обработку материала шлифовальным инструментом, проектирование увеличенного изображения зоны резания на экран с чертежом. Обработку материала...
Тип: Изобретение
Номер охранного документа: 0002597444
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.713c

Демпфирующий резец

Резец содержит режущую пластину и узел ее крепления, державку с выборкой в ней, имеющей прямоугольное основание, вставку из материала с высоким демпфированием и металлическую оправку. Для снижения трудоемкости монтирования вставки в прямоугольном основании выборки выполнено сквозное резьбовое...
Тип: Изобретение
Номер охранного документа: 0002596546
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.780f

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике и предназначено для определения параметров четырехэлементных двухполюсников или параметров датчиков с четырехэлементной схемой замещения. Технический результат: уменьшение погрешности измерения за счет...
Тип: Изобретение
Номер охранного документа: 0002598977
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78c2

Способ получения медного порошка из отходов

Изобретение относится к получению медного порошка из отходов электротехнической медной проволоки. Отходы, содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 28-100 Гц, напряжении на электродах 150-220 В и...
Тип: Изобретение
Номер охранного документа: 0002599476
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78de

Теплоэлектрогенератор для автономного энергоснабжения

Изобретение относится к теплоэлектроэнергетике и может использоваться для обеспечения тепловой и электрической энергией индивидуальных домов и квартир путем одновременного получения тепловой и электрической энергии в одном аппарате. Техническим результатом изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002599087
Дата охранного документа: 10.10.2016
+ добавить свой РИД