×
19.01.2018
218.016.02ca

Результат интеллектуальной деятельности: Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности

Вид РИД

Изобретение

Аннотация: Использование: для измерения теплофизических параметров полупроводниковых диодов. Сущность изобретения заключается в том, что способ заключается в предварительном определении ватт-амперной характеристики объекта измерения - полупроводникового диода, пропускании через диод последовательности импульсов греющего тока с постоянным периодом следования и изменяющейся амплитудой, обеспечивающей гармонический закон модуляции греющей мощности, измерении в паузах между импульсами прямого напряжения на диоде при малом измерительном токе и определении изменения температуры p-n перехода, вычислении с помощью Фурье-преобразования амплитуды и фазы основной гармоники переменной составляющей температуры перехода и определении модуля и фазы теплового импеданса полупроводникового диода. Технический результат: обеспечение возможности повышения точности измерения теплового сопротивления. 1 ил.

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле качества изготовления полупроводниковых диодов.

Среди существующих способов измерения теплового сопротивления полупроводниковых диодов известен способ, заключающийся в том, что на контролируемый диод подают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра Uтчп - прямого напряжения полупроводникового диода при пропускании через него малого измерительного тока (ГОСТ 19656, 18-84. Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления). Прямое напряжение полупроводникового диода при пропускании через него малого измерительного тока линейно зависит от температуры, что позволяет косвенно измерить температуру перехода, предварительно определив температурный коэффициент напряжения.

Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения Uтчп(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения (Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. – М.: Сов. радио, 1980. С. 51).

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ определения теплового сопротивления переход-корпус полупроводниковых диодов (см. патент РФ №2003128, БИ №41-42, 1993 г.), суть которого заключается в следующем. Через полупроводниковый диод в прямом направлении пропускают последовательность импульсов греющего тока, амплитуду которых модулируют по гармоническому закону с периодом, на порядок большим тепловой постоянной времени переход-корпус, измеряют переменную составляющую падения напряжения на диоде и определяют амплитуду переменной составляющей греющей мощности, в паузах между греющими импульсами измеряют падение напряжения при фиксированном начальном токе и определяют температуру перехода, что позволяет определить тепловое сопротивление переход-корпус полупроводниковых диодов.

Недостатком прототипа является то, в нем не учтен нелинейный характер вольт-амперной характеристики I=f(U) полупроводниковых диодов, в результате чего при гармоническом законе модуляции амплитуды греющего тока рассеиваемая в диоде греющая мощность, определяемая произведением силы тока на напряжение, не будет изменяться строго по гармоническому закону. В спектре греющей мощности появятся гармоники с частотой, кратной частоте модуляции амплитуды греющего тока (см. Баскаков С.И. Радиотехнические цепи и сигналы. – М.: Высш. шк., 2003. С. 305), что приводит к погрешности определения теплового сопротивления полупроводниковых диодов.

Технический результат - повышение точности измерения теплового сопротивления полупроводниковых диодов и расширение функциональных возможностей способа.

Технический результат достигается тем, что, как и в прототипе, через полупроводниковый диод пропускают последовательность импульсов греющего тока Iгр с постоянным периодом следования, а в паузах между ними измеряют температурочувствительный параметр - прямое напряжение на диоде Uтчп при малом измерительном токе Iизм. В отличие от прототипа, в котором модулируют амплитуду тока греющих импульсов по гармоническому закону, в заявляемом изобретении производят модуляцию греющей мощности по гармоническому закону.

Для этого предварительно определяют ватт-амперную характеристику объекта измерения, для чего через полупроводниковый диод пропускают несколько греющих импульсов с разной амплитудой тока I, измеряют напряжение U на диоде во время прохождения через него греющих импульсов и вычисляют для каждого импульса мощность Р, рассеиваемую на диоде, по формуле P=I⋅U, после чего с помощью сплайн-интерполяции определяют ватт-амперную характеристику I=f(P) полупроводникового диода, после чего задают гармонический закон изменения греющей мощности

P(t)=P01⋅cosωt,

где Р0 - среднее значение греющей мощности; Р1 - амплитуда переменной составляющей греющей мощности; ω - частота модуляции греющей мощности. Используя ватт-амперную характеристику полупроводникового диода, вычисляют значения амплитуд тока греющих импульсов, обеспечивающих гармонический закон модуляции греющей мощности, после чего через полупроводниковый диод пропускают последовательность греющих импульсов с вычисленными значениями амплитуд тока и постоянным периодом следования.

В паузах между греющими импульсами измеряют температурочувствительный параметр - прямое напряжение на полупроводниковом диоде Uтчп при малом измерительном токе Iизм и определяют температуру перехода T(t), которая, как и греющая мощность, изменяется по гармоническому закону, но сдвинута по фазе относительно греющей мощности на некоторый угол ϕ:

T(t)=Т0+T1⋅cos(ωt+ϕ),

где Т0 - среднее значение температуры перехода; T1 - амплитуда переменной составляющей температуры перехода.

Затем производят дискретное Фурье-преобразование температуры перехода T(t) и вычисляют амплитуду основной гармоники Т1 на частоте модуляции греющей мощности ω:

где А(ω) и В(ω) - вещественные и мнимые Фурье-трансформанты температуры перехода.

Модуль теплового импеданса определяется отношением амплитуд основных гармоник температуры перехода T1 и греющей мощности P1:

.

Фаза теплового импеданса ϕ определяются отношением мнимых и вещественных Фурье-трансформант В(ω) и А(ω):

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 1. Устройство содержит микроконтроллер 1, аналого-цифровой преобразователь 2, источник измерительного тока 3; токовый цифро-аналоговый преобразователь 4, формирователь греющих импульсов тока 5, усилитель греющих импульсов тока 6; резистор R; объект измерения - полупроводниковый диод D.

Способ осуществляют следующим образом. Микроконтроллер 1 с помощью токового цифро-аналогового преобразователя 4, формирователя греющих импульсов тока 5 и усилителя греющих импульсов тока 6 формирует несколько греющих импульсов с разной амплитудой I, поступающих на объект измерения - полупроводниковый диод D. С помощью аналого-цифрового преобразователя 2 измеряют напряжение U на диоде во время прохождения через него греющих импульсов и передают результаты преобразования в микроконтроллер, который для каждого импульса вычисляет мощность Р, рассеиваемую на диоде, по формуле P=I⋅U, после чего с помощью сплайн-интерполяции определяет ватт-амперную характеристику I=f(P) полупроводникового диода. После этого микроконтроллер 1, используя ватт-амперную характеристику полупроводникового диода, формирует последовательность греющих импульсов тока, амплитудные значения которых обеспечивают гармонический закон изменения греющей мощности. В паузах между греющими импульсами с помощью аналого-цифрового преобразователя 2 измеряют температурочувствительный параметр - прямое напряжение Uтчп на полупроводниковом диоде при протекании через него малого измерительного тока, формируемого источником измерительного тока 3. Результаты измерения Uтчп передают в микроконтроллер. Используя предварительно измеренный температурный коэффициент напряжения для данного типа диодов, определяют изменения температуры перехода T(t), вызванные воздействием на полупроводниковый диод греющей мощности, изменяющейся по гармоническому закону. После этого с помощью Фурье-преобразования вычисляют мнимые и вещественные трансформанты температуры и по ним вычисляют амплитуду и фазу переменной составляющей температуры перехода, после чего определяют модуль и фазу ϕ теплового импеданса полупроводникового диода.

Повышение точности измерения теплового сопротивления полупроводниковых диодов в заявляемом способе обеспечивается за счет учета нелинейности вольт-амперной характеристики диода при формировании греющей мощности, изменяющейся по гармоническому закону.


Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности
Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности
Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности
Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности
Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности
Источник поступления информации: Роспатент

Показаны записи 251-251 из 251.
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
Показаны записи 361-370 из 415.
13.01.2017
№217.015.71bc

Способ получения многослойного покрытия для режущего инструмента

Изобретение может быть использовано для нанесения износостойких покрытий на режущий инструмент. Проводят вакуумно-плазменное нанесение многослойного покрытия. Нижний слой наносят из нитрида титана. Далее наносят промежуточный слой из карбонитрида титана. Затем наносят верхний слой из нитрида...
Тип: Изобретение
Номер охранного документа: 0002596528
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ea

Способ получения многослойного покрытия для режущего инструмента

Изобретение может быть использовано для нанесения износостойких покрытий на режущий инструмент. Проводят вакуумно-плазменное нанесение многослойного покрытия. Нижний слой наносят из нитрида соединения титана и циркония при их соотношении, мас.%: титан 53,3, цирконий 46,7. Промежуточный слой...
Тип: Изобретение
Номер охранного документа: 0002596532
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.753e

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Наносят нижний слой из нитрида титана. Затем наносят промежуточный слой из нитрида соединения титана и циркония при их соотношении, мас.%: титан 76,0-82,0,...
Тип: Изобретение
Номер охранного документа: 0002598712
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.80a5

Система безопасности пользователя сиденьем транспортного средства

Изобретение относится к средствам пассивной безопасности пассажирских транспортных средств. Система безопасности пользователя сиденьем транспортного средства включает установленные на полу салона направляющие салазки для ограниченного перемещения сиденья в направлении действия сил инерции с...
Тип: Изобретение
Номер охранного документа: 0002602127
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.80ac

Транспортное кресло с адаптивным углом поворота

Изобретение относится к оборудованию салонов транспортных средств. Транспортное кресло с адаптивным углом поворота содержит сиденье со спинкой, выполненные в виде единого модуля, оснащенного ремнями безопасности и прикрепленного к верхнему торцу винтовой цилиндрической пружины, установленной...
Тип: Изобретение
Номер охранного документа: 0002602003
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.80f9

Салон пассажирского общественного транспортного средства

Изобретение относится к оборудованию салонов пассажирских транспортных средств. Салон пассажирского транспортного средства с рядами расположенных друг за другом кресел, включающих сиденье со спинкой, имеющих возможность разворота рабочей поверхности относительно направления движения...
Тип: Изобретение
Номер охранного документа: 0002602010
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.813c

Транспортное кресло с адаптивным углом поворота

Изобретение относится к оборудованию салонов транспортных средств. Транспортное кресло с адаптивным углом поворота содержит сиденье со спинкой, выполненные в виде единого модуля, оснащенного ремнями безопасности для фиксации пользователя и установленного на монтажной раме с помощью закрепленной...
Тип: Изобретение
Номер охранного документа: 0002602002
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8ad8

Способ экстренного торможения транспортного средства

Изобретение относится к области автомобилестроения, в частности к системам пассивной безопасности наземного транспорта. Способ заключается в измерении дистанции транспортного средства до препятствия с помощью датчика дистанции. Затем рассчитывают с помощью электронного программируемого блока...
Тип: Изобретение
Номер охранного документа: 0002604369
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.918a

Теплофикационная турбоустановка

Изобретение относится к области теплоэнергетики. В теплофикационной турбоустановке, содержащей теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор с подключенным к нему основным эжектором, трубопровод основного конденсата турбины с...
Тип: Изобретение
Номер охранного документа: 0002605683
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a01d

Способ заполнения конструктивных элементов композиционного шлифовального круга твердым смазочным материалом

Изобретение относится к области машиностроения и может быть использовано при изготовлении композиционных шлифовальных кругов (КШК). Способ включает заполнение его конструктивных элементов твердым смазочным материалом (ТСМ) и удаление излишков ТСМ с поверхности круга. Перед заполнением...
Тип: Изобретение
Номер охранного документа: 0002606675
Дата охранного документа: 10.01.2017
+ добавить свой РИД