×
19.01.2018
218.016.0276

Результат интеллектуальной деятельности: Способ получения тонколистового проката из бор-содержащего алюминиевого сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из борсодержащего алюминиевого сплава с содержанием бора не менее 2 мас.% включает приготовление алюминиевого расплава, содержащего медь и боридные частицы, получение слитка путем кристаллизации расплава, гомогенизацию слитка, горячую прокатку, холодную прокатку и упрочняющую термообработку, при этом в алюминиевый расплав вводят от 5,5 до 6,5 мас.% меди, горячую прокатку проводят при температуре 400-450°C с суммарной степенью обжатия от 85 до 90%, а холодную прокатку проводят с суммарной степенью обжатия от 92 до 96%. Изобретение направлено на получение алюминиевого сплава с содержанием бора не менее 2 мас.%, обладающего высокими и стабильными механическими свойствами. В частности, способ позволяет получить прокат толщиной менее 0,3 мм, временным сопротивлением на разрыв σ>420 МПа и относительным удлинением δ>8%. 1 з.п. ф-лы, 2 пр., 2 табл., 3 ил.

Область техники

Настоящее изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью.

Предшествующий уровень техники

Материалы на основе алюминия (сплавы и композиты), содержащие бор, обладают уникальным сочетанием физических и механических свойств. Поскольку бор имеет свойство хорошо поглощать нейтронное излучение, они широко применяются в ядерной энергетике [W.K. Barney, G.A. Shemel, W.E. Seymour, Nucl. Sci. Eng. 1 (1958) 439-448]. Несмотря на то что борсодержащие композиты достаточно давно эксплуатируются, их использование связанно с рядом проблем, в частности с технологией их получения. Поскольку бор имеет низкую растворимость в жидком алюминии классические технологии, связанные с получением гомогенного расплава (без наличия каких-либо твердых фаз) и формированием борсодержащих соединений при кристаллизации, не могут быть практически реализованы.

Известны многочисленные способы получения борсодержащих материалов на основе алюминия с использованием методов порошковой металлургии. В частности, известен способ получения материала, в котором в качестве алюминиевой матрицы используются сплавы разных систем (1xxx, 3ххх, 6ххх и др.), в качестве борсодержащего наполнителя - карбид бора (В4С) в виде порошка размером 1-60 мкм (пат. US 6602314 В1, опубл 05.08.2003). Данный способ производства материалов включает спекание под давлением (с предварительным вакуумированием). Недостатком этого и всех способов, связанных с порошковой металлургией, является трудность получения крупных заготовок, предназначенных для прокатки. Другим недостатком данного способа является то, что предложенные матричные сплавы обладают разным сочетание физико-химических свойств, что определяет широкий разброс по характеристикам, достигаемым в конечном изделии.

Известен способ получения борсодержащего материала, описанный в патенте US 2008/0050270A1 (2008), согласно которому в алюминиевый расплав, полученный расплавлением промышленной лигатуры алюминий-бор, вводят титан таким образом, чтобы сформировать в расплаве, температура которого поддерживается в пределах от 700 до 850°С, частицы диборида титана (ТiВ2), после чего проводят кристаллизацию путем литья. В частных пунктах данного патента предлагается вводить добавки гадолиния и самария. Данный способ позволяет получить в материале микроструктуру с дисперсными частицами фазы ТiВ2, которые формируются в процессе замешивания в результате фазовых превращений. Однако полное протекания этих фазовых превращений требует длительного времени, что обуславливает относительно высокую стоимость данного технологического процесса. Наличие добавок гадолиния и самария еще больше удорожают процесс.

Известен многокомпонентный сплав на основе алюминия, содержащий диборид титана в количестве 0,5-20 масс %, предназначенный для получения отливок и раскрытый в патенте RU 2556247 (опубл. 10.07.2015, бюл. №19). Недостатком данного сплава является то, что он не предназначен для получения деформированных полуфабрикатов, в частности листов.

Известен также способ получения борсодержащего материала, разработанный компанией Alcan Aluminum Corporation, который включает жидкофазный процесс замешивания борсодержащих частиц соединения В4С в жидкий расплав (Патент US 5531425 (1996)). По данному способу в кристаллизаторах получают слитки, далее применяется горячая прокатка для производства плит и листов. Недостатком данного способа является трудность предотвращения кластеризации неметаллических частиц в процессе замешивания, что может приводить к формированию негомогенной структуры. Существенным недостатком данного способа является то, что получаемые листы имеют низкую прочность (σв<100 МПа).

Наиболее близким к заявленному изобретению является способ получения листов борсодержащего материала на основе алюминия, который раскрыт в патенте РФ 2538789 (опубл. 10.01.2015, бюл. №1). Этот способ включает приготовление алюминиевого расплава, содержащего от 0,5 до 0,9% кремния, от 1,3 до 1,9% магния и от 0,2 до 0,4% меди, формирование в нем борсодержащих частиц с массовой долей от 4 до 8% при температуре от 850 до 930°С в течение 30-45 мин, литье слитков и их гомогенизацию, получение листов путем прокатки слитка и их термообработку.

Листы толщиной 2 мм, полученные по данному способу, обладают следующими механическими свойствами: σв>320 МПа, σ0,2>300 МПа и δ>4%. Недостатком данного способа является то, что система легирования алюминиевой матрицы (типа АД33, ГОСТ 4784-97), не позволяет получить в деформированных полуфабрикатах прочность выше 350 МПа. Кроме того, слитки, полученные по данному способу, не предназначены для изготовления тонколистового проката (менее 0,3 мм). Еще одним недостатком является наличие в сплаве магния, который взаимодействует с бором. Это приводит к уменьшению его концентрации в алюминиевой матрице и, как следствие, к снижению прочностных свойств. Поскольку распределение магния между боридными частицами и алюминиевой матрицей сильно зависит от параметров плавки (в частности, от температуры и времени выдержки расплава), то в известном способе температура и время расплава ограничены узкими пределами, что затрудняет его использование в промышленных условиях.

Раскрытие изобретения

Техническим результатом является создание способа получения тонколистового проката алюминиевого сплава, содержащего не менее 2% бора и обладающего высокими и стабильными механическими свойствами.

В частном исполнении данный способ позволяет получить прокат толщиной менее 0,3 мм, временным сопротивлением на разрыв σв>420 МПа и относительным удлинением δ>8%.

Технический результат достигается созданием способа получения тонколистового проката борсодержащего алюминиевого сплава, включающего приготовление алюминиевого расплава, содержащего медь и боридные частицы в количестве от 2,8 до 3,5 об. %, получение слитка путем кристаллизации расплава, гомогенизацию слитка, горячую и холодную прокатку и упрочняющую термообработку, отличающегося тем, что в алюминиевый расплав вводят от 5,5 до 6,5 масс. % меди, горячую прокатку проводят при 400-450°С с суммарной степенью обжатия от 85 до 90%, а холодную прокатку проводят с суммарной степенью обжатия от 92 до 96%.

Изобретение поясняется чертежом, где на фиг. 1 показан внешний вид тонколистового проката из борсодержащего материала на основе алюминия, полученного по варианту №3 (см. табл. 1);

на фиг. 2. показана микроструктура тонколистового проката борсодержащего материала на основе алюминия, полученного по варианту №3 (см. табл. 1), а на фиг. 3 показана фрактограмма тонколистового проката борсодержащего материала на основе алюминия, полученного по варианту №3 (см. табл. 1).

Сущность изобретения состоит в том, чтобы обеспечить высокую технологическую пластичность слитков и реализовать в тонколистовом прокате структуру, состоящую из алюминиевой матрицы, способной в результате деформационно-термической обработки к дисперсионному упрочнению за счет формирования вторичных выделений фазы θ' (метастабильная модификация фазы θ-Аl2Сu), и равномерно распределенных в ней борсодержащих частиц со средним размером не более 25 мкм и объемной долей от 2,8 до 3,5 об. %. Такая структура позволяет обеспечить наилучшее сочетание эксплуатационных свойств тонколистового проката (в частности, прочности, пластичности и поглощения нейтронного излучения). Наличие боридных частиц (преимущественно в виде соединения AlB12) в количестве не менее 2,8 об.% позволяет обеспечить необходимый уровень поглощения нейтронного излучения (расчетное содержание бора для такой структуры составляет не менее 2 масс. %). Поскольку медь не взаимодействует с бором в процессе приготовления расплава, то данный способ позволяет обеспечить стабильность механических свойств при изменении параметров плавки в широком диапазоне. Нижний предел по меди и выбран с целью достижения необходимого уровня прочностных свойств, а верхний - с целью достижения необходимого уровня технологичности, в частности при получении тонколистового проката.

Примеры выполнения

ПРИМЕР 1

Для экспериментального обоснования предложенного изобретения было выполнено 3 варианта получения тонколистового проката борсодержащего алюминиевого сплава по заявляемому способу (2-4) и 3 варианта получения проката по известному способу (6-8).

Приготовление расплава и формирование в нем борсодержащих частиц проводили в индукционной печи «РЭЛТЕК» в графитошамотном тигле. Бор вводили в виде специально приготовленной лигатуры. Температуру расплава (Т) варьировали от 900 до 1050°С, а время выдержки расплава перед литьем слитков (τ) варьировали от 30 до 120 минут (табл. 1). Заливку проводили в металлическую изложницу, получая плоские слитки с размерами 40×80×200 мм. Далее слитки гомогенизировали при 540°С, а затем проводили горячую прокатку при 430°С до толщины (h) 4 мм (суммарная степень обжатия 90%), промежуточный отжиг, холодную прокатку до 0,28 мм (суммарная степень обжатия 93%). В известном способе (варианты 6-8) холодную прокатку проводили до 2 мм (суммарная степень обжатия 50%)

Объемную долю борсодержащих включений (Qv) и их средний размер (d) определяли методами металлографического анализа по изображениям микроструктуры, полученным на сканирующем электронном микроскопе TESCAN VEGA 3.

Холоднокатаные листы подвергали упрочняющей термообработке, включающей нагрев 540°С, закалку в холодной воде и искусственное старение. Механические свойства листов, представленные в табл. 1 (предел прочности - σв и относительное удлинение - δ), при одноосном растяжении определяли при комнатной температуре на универсальной испытательной машине Zwick Z250 в соответствии с ГОСТ 1497-84. Скорость испытания составляла 10 мм/мин, расчетная длина 50 мм.

Как видно из табл. 1, только предложенный способ получения тонколистового проката (№№2-4, см.) обеспечивает высокую технологическую пластичность (Фиг. 1) и заданный уровень механических свойств листов. При этом разброс значений временного сопротивления составляет всего 7 МПа (т.е. менее 1 отн. %). В структуре тонколистового прокатка выявляются боридные частицы со средним размером менее 25 мкм и небольшое количество включений фазы Аl°Сu (Фиг. 2а). Основная часть меди находится в алюминиевой матрице в виде упрочняющих выделений фазы θ'. Компактная форма боридов приводит к мелкоямочному механизму разрушения, что видно из фрактограммы (Фиг. 2б). Такой характер разрушения наиболее благоприятен для механических свойств.

В варианте №1 содержание меди в алюминиевом расплаве ниже заявленного уровня, поэтому прочность холоднокатаных листов меньше требуемой. В способе №5 концентрации меди и бора в алюминиевом расплаве выше заявленных пределов. Это привело к снижению технологической пластичности, в результате листы растрескались в процессе холодной прокатки, поэтому их механические свойства не определяли.

В известном способе расширения диапазона по температуре расплава и времени его выдержки привело к сильному разбросу механических свойств. В частности, разброс значений временного сопротивления составляет 80 МПа (т.е. более 20 отн. %).

ПРИМЕР 2

Для экспериментального обоснования параметров деформационной обработки борсодержащего алюминиевого сплава было выполнено 5 вариантов получения тонколистового проката (табл. 2). Количество меди и бора вводимого в расплав, его температура и время выдержки во всех случаях было одинаковым и отвечало варианту 3 из примера 1 (см. табл. 1).

В способе №1 температура горячей прокатки ниже заявленного предела, что не обеспечило достаточной технологической пластичности. В результате слитки растрескались в процессе прокатки, поэтому их механические свойства не определяли. В способе №5 сочетание высокой температуры горячей деформации и малая степень обжатия при холодной деформации привело к снижению механических свойств при испытании на разрыв. Только предложенный способ получения тонколистового проката (№№2-4) обеспечивает высокие механические свойства (σв>420 МПа и δ>8%).

Таблица 2

Параметры получения тонколистового проката и его механические свойства (h1 - толщина листа, получаемая после горячей прокатки; h2 - толщина листа, получаемая после холодной прокатки; ε1 - суммарная степень обжатия при горячей прокатке; ε2 - суммарная степень обжатия при холодной прокатке)


Способ получения тонколистового проката из бор-содержащего алюминиевого сплава
Способ получения тонколистового проката из бор-содержащего алюминиевого сплава
Источник поступления информации: Роспатент

Показаны записи 261-270 из 340.
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5225

Устройство для адаптивного временного профилирования ультракоротких лазерных импульсов

Изобретение относится к области лазерной техники и касается устройства для адаптивного временного профилирования ультракоротких лазерных импульсов. Устройство включает в себя лазерный задающий осциллятор, стретчер, обеспечивающий чирпирование лазерного импульса, акустооптическую дисперсионную...
Тип: Изобретение
Номер охранного документа: 0002687513
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5376

Сверло для получения отверстий с задней подрезкой

Изобретение относится к сверлу для изготовления отверстия с задней подрезкой, в частности в облицовочных панелях из керамики, камня, бетона и других хрупких материалов, которые крепятся на фасадах здания с помощью расширяемого анкера. В сверле, содержащем закрепленную на хвостовике со смещением...
Тип: Изобретение
Номер охранного документа: 0002687589
Дата охранного документа: 15.05.2019
24.05.2019
№219.017.5e02

Бесконтактный датчик микрорельефа

Изобретение может использоваться для выявления и измерения микрорельефа поверхности из металлов и диэлектриков, а также с целями дефектоскопии поверхности и обнаружения неоднородности приповерхностных слоев. Бесконтактный датчик микрорельефа состоит из одного или нескольких микроволновых...
Тип: Изобретение
Номер охранного документа: 0002688902
Дата охранного документа: 22.05.2019
30.05.2019
№219.017.6b6d

Способ получения модифицированных кристаллов магнетита

Изобретение относится к способу получения модифицированных кристаллов магнетита (FeO), содержащих на поверхности смесь липидов, и может быть использовано в фармацевтической промышленности. Предложенный способ получения модифицированных кристаллов магнетита включает смешение 138 мас.ч....
Тип: Изобретение
Номер охранного документа: 0002689392
Дата охранного документа: 28.05.2019
15.06.2019
№219.017.8340

Литейный алюминиевый сплав с добавкой церия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691475
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.8374

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691476
Дата охранного документа: 14.06.2019
20.06.2019
№219.017.8d34

Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов. Способ получения прутков из сверхупругих...
Тип: Изобретение
Номер охранного документа: 0002692003
Дата охранного документа: 19.06.2019
26.06.2019
№219.017.92b2

Установка для измерения характеристик процесса свс неорганических соединений в автоволновом режиме

Изобретение относится к области металлургии, в частности к установкам (устройствам) реакторам для проведения самораспространяющегося высокотемпературного синтеза. Может применяться для синтеза материалов из реакционных смесей, состоящих из твердофазных реагентов или с введением газофазных...
Тип: Изобретение
Номер охранного документа: 0002692352
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.a9e3

Способ изготовления коррозионностойких постоянных магнитов

Изобретение относится к изготовлению постоянных магнитов на основе сплавов Nd-Fe-B. Способ включает прессование заготовок, их механическую обработку, нанесение на поверхность слоя алюминия толщиной 10-15 мкм холодным газодинамическим напылением и термообработку в расплаве солей с последующим...
Тип: Изобретение
Номер охранного документа: 0002693887
Дата охранного документа: 05.07.2019
Показаны записи 211-217 из 217.
14.03.2020
№220.018.0c07

Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов, в том числе проволоки, диаметром менее 0,3 мм из алюминиево-кальциевого композиционного сплава из слитков промышленных...
Тип: Изобретение
Номер охранного документа: 0002716566
Дата охранного документа: 12.03.2020
17.06.2020
№220.018.2704

Способ раскатки полой заготовки на оправке в трехвалковом стане винтовой прокатки и рабочий валок для его осуществления

Группа изобретений относится к области обработки металлов давлением, а именно производству бесшовных труб, и может быть применима при раскатке полых заготовок валками на оправке в стане винтовой прокатки. Способ включает захват полой заготовки валками, деформацию полой заготовки по диаметру,...
Тип: Изобретение
Номер охранного документа: 0002723494
Дата охранного документа: 11.06.2020
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.59b4

Способ винтовой прокатки

Изобретение относится к винтовой прокатке сплошных заготовок. Осуществляют нагрев заготовок, деформацию имеющими обжимной и калибрующий участки валками, развернутыми на угол подачи и раскатки так, что оси валков по отношению к оси прокатки являются скрещивающимися прямыми. Угол скрещивания...
Тип: Изобретение
Номер охранного документа: 0002761838
Дата охранного документа: 13.12.2021
16.05.2023
№223.018.614b

Литейный алюминиево-кальциевый сплав на основе вторичного сырья

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 300°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный сплав на...
Тип: Изобретение
Номер охранного документа: 0002741874
Дата охранного документа: 29.01.2021
21.05.2023
№223.018.69f1

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.69f2

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
+ добавить свой РИД