×
19.01.2018
218.016.0267

Результат интеллектуальной деятельности: СПОСОБ СЦЕПЛЕНИЯ ПАРОВОЙ ТУРБИНЫ И ГАЗОВОЙ ТУРБИНЫ С ЗАДАВАЕМЫМ УГЛОМ РАССОГЛАСОВАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002630054
Дата охранного документа
05.09.2017
Аннотация: Изобретение относится к энергетике. Способ сцепления вращающегося устройства, в частности паровой турбины, и валового устройства в качестве газовой турбины со следующими этапами: ускорение вращающегося устройства до исходной частоты вращения, ниже частоты вращения валового устройства; регистрация угла рассогласования между валовым устройством и вращающимся устройством; ускорение вращающегося устройства с параметром ускорения, выводимым из заданной разницы частоты вращения, образующейся в зависимости от зарегистрированного угла рассогласования, ускорения до исходной частоты вращения и задаваемого целевого угла сцепления. Кроме того, изобретение относится к соответствующей компоновке. Изобретение позволяет усовершенствовать способ сцепления с задаваемым углом сцепления, а также позволяет создать соответствующую компоновку. 2 н. и 8 з.п. ф-лы, 7 ил.

В комбинированных газо- и паротурбинных электростанциях при сгорании газа сначала приводится в движение газовая турбина. При помощи тепла отработавших газов газовой турбины производится пар для паровой турбины. Поэтому сначала при пуске газо- и паротурбинной электростанции приводится в движение газовая турбина. Паровая турбина может быть подключена только тогда, когда поступает достаточно пара. В устройствах с одним валом газовая турбина и генератор жестко соединены на валу. Паровая турбина расположена на той же оси и может подключаться через соединительную муфту. Поэтому требуется сцепление паровой и газовой турбины.

При этом на практике угол сцепления получается случайно. Из EP 1911939 A1 известен целенаправленный выбор угла сцепления. Благодаря этому можно выбрать такой угол сцепления, при котором вибрационная нагрузка минимизирована. Грубо говоря, это позволяет в определенной степени выравнивать дисбаланс обеих турбин. В частности, по сравнению с соединительной муфтой, в которой обе турбины соединятся со сложением дисбалансов, благодаря этому можно достигать уменьшения вибрационной нагрузки. Несмотря на это преимущество, этот способ не используется.

Задача изобретения состоит в создании усовершенствованного способа сцепления с задаваемым углом сцепления, а также в создании соответствующей компоновки.

Хотя описанное далее изобретение по существу и подходит для сцепления самых различных вращающихся устройств с самыми различными валовыми устройствами, в интересах более наглядного изображения в качестве примера вращающегося устройства всегда выбирается паровая турбина, а газовая турбина - в качестве примера валового устройства. При этом речь идет о самом важном с современной точки зрения применении изобретения. Однако явно предполагаются и другие варианты применения.

Установлено, что способ сцепления паровой турбины и газовой турбины следует осуществлять со следующими этапами. Сначала разгоняют паровую турбину до исходной частоты вращения, ниже частоты вращения газовой турбины. Это может происходить, как обычно, а при достаточной массе пара запускают паровую турбину. При этом необходима регистрация угла рассогласования между газовой турбиной и паровой турбиной. При достижении исходной частоты вращения ускорение паровой турбины продолжается с параметром ускорения, выбираемым в зависимости от разницы частоты вращения и угла рассогласования. Как только разница частоты вращения между паровой турбиной и газовой турбиной упадет до величины нуля, сцепляют паровую турбину, причем паровая турбина одновременно продолжает разгоняться. В частности, в начале процесса сцепления частота вращения паровой турбины соответствует частоте вращения газовой турбины. Паровая турбина разгоняется относительно газовой турбины, поэтому частота вращения паровой турбины кратковременно превышает частоту вращения газовой турбины.

В зависимости от заданного целевого угла и ускорения паровой турбины до исходной частоты вращения устанавливают фактически выбираемый в зависимости от разницы угла и разницы частоты вращения заданный параметр частоты вращения паровой турбины. При этом исходят из того факта, что имеется однозначная взаимосвязь между углом рассогласования при исходной частоте вращения, параметром ускорения, с которым паровая турбина разгоняется от исходной частоты вращения до заданной частоты вращения относительно газовой турбины и получающимся углом сцепления, предпочтительно, целевым углом сцепления. Разницу между заданной частотой вращения и частотой вращения газовой турбины называют разницей заданной частоты вращения. Заданная частота вращения паровой турбины изменяется по времени и образуется в зависимости от разницы частоты вращения и угловой разницы. Во время сцепления частота вращения паровой турбины немного превышает частоту вращения газовой турбины. После окончания сцепления частота вращения газовой турбины и паровой турбины естественно одинаковая.

Угол рассогласования при исходной частоте вращения, называемый стартовым углом рассогласования, получается случайно и становится известным из измерения угла рассогласования. При этом стартовый угол рассогласования выбирают на основе расчета из содержащего 360° участка вокруг так называемого номинального стартового угла рассогласования. Говоря о номинальном стартовом угле рассогласования, речь идет об угле, который газовая турбина опережала бы при неизменном сохранении ускорения паровой турбины до сцепления с ней, учитывая целевой угол. Это следует изобразить на одном примере: стартовая разница скорости равна 1 Гц, прежнее ускорение паровой турбины - 0,05 Гц/с, целевое значение 0°; тогда номинальный стартовый угол рассогласования равен 3600°.

Целевой угол сцепления обычно выбирают таким, чтобы достигать минимизации вибрационной нагрузки сцепленной газовой турбины и паровой турбины. Для этого предпочтительно настраиваемый целевой угол сцепления может определяться посредством измерения вибрационной нагрузки и компьютерных расчетов. Как правило, имеет место их комбинация.

При выборе исходной разницы частоты вращения и выборе параметра ускорения существуют, хотя и ограниченные, степени свободы. При выборе параметра ускорения нужно учитывать достаточное наличие в распоряжении пара и отсутствие неустойчивостей или подобных явлений.

Благоприятным оказалось, если исходная разница частоты вращения составляет примерно от 0,5 Гц до около 1 Гц, причем частота вращения паровой турбины меньше частоты вращения газовой турбины. Существенное преимущество данного способа по сравнению с используемым в EP 1911939 A1 способом состоит в том, что не требуется прерывание процесса ускорения при выдерживаемой частоте вращения. Благодаря этому, достигают плавного сцепления и одновременно задаваемого целевого угла сцепления.

Также следует обращать внимание на тот факт, что во время ускорения паровой турбины от исходной частоты вращения до частоты вращения, при которой скорость паровой турбины достигает скорости газовой турбины, паровая турбина опережает газовую турбину на несколько полных оборотов относительно целевого угла. В отношении изменения угла рассогласования число полных оборотов, на которое паровая турбина опережает газовую турбину, очевидно несущественно. Изменение количества этих полных оборотов дает следующую степень свободы, поэтому для достижения нужного целевого угла сцепления при данном ускорении возможны различные исходные разницы частоты вращения, соответственно при данной разнице исходной частоты вращения принимаются в расчет различные параметры ускорения.

В следующем варианте выполнения заданную исходную частоту вращения выбирают из диапазона разницы частоты вращения, поэтому при установлении заданного параметра ускорения из разницы заданной частоты вращения выбирают величину, с которой произошло ускорение паровой турбины до исходной частоты вращения. Благодаря этому достигают того, что параметр ускорения для получения целевого угла изменяется совсем незначительно или в идеальном случае - не изменяется совсем.

В другом варианте выполнения предусмотрено, что исходная частота вращения составляет почти на 1 Гц меньше частоты вращения газовой турбины, предпочтительно около 0,5 Гц-1,5 Гц и особенно предпочтительно около 0,5 Гц и около 1,1 Гц. Эти величины оказались подходящими.

В другом варианте выполнения предусмотрено, что параметр ускорения составляет от около 0,025 Гц /с до около 0,075 Гц/с, предпочтительно около 0,05 Гц/с.

Обычно следует обращать внимание на то, что при сцеплении угол рассогласования изменяется на угол проворачивания при сцеплении. Причина состоит в том, что паровая турбина сначала, как правило, разгоняется до заданной частоты вращения, в частности до частоты вращения, немного превышающей частоту вращения газовой турбины. При последующем за этим процессом обгона вворачивании в соединительную муфту может происходить обратное вращение на угол проворачивания при сцеплении. Учитывая его, в конечном счете можно еще больше оптимизировать вибрационную нагрузку.

Изобретение относится также к соответствующей компоновке с газовой турбиной и паровой турбиной, с соединительной муфтой для сцепления газовой турбины и паровой турбины. Эта компоновка имеет устройство для регистрирования угла рассогласования между газовой турбиной и паровой турбиной. Кроме того, имеется устройство для ускорения паровой турбины с параметром ускорения. Кроме него предусмотрены средства, обеспечивающие в зависимости от зарегистрированного угла рассогласования посредством согласования параметра ускорения, с которым разгоняется паровая турбина, и разницы заданной частоты оборотов между газовой турбиной и паровой турбиной, при которой начинается процесс сцепления, достижение заданного целевого угла сцепления между газовой турбиной и паровой турбиной.

Эта компоновка подходит для осуществления описанного выше способа. При усовершенствовании компоновки можно получить различные варианты выполнения способа.

При этом следует отметить, что, во всяком случае, требуются незначительные конструктивные изменения известной газотурбинной установки, поставляющей пар в парогенератор отработанного тепла для приведения в движение паровой турбины. В частности, всегда имеются средства для ускорения паровой турбины. При этом конкретно речь идет, в том числе, о клапанах, которые должны подводить пар к паровой турбине, а также о соответствующем блоке управления клапанами. Принято также определять фазовый угол турбин. Поэтому обычно имеются соответствующие измерительные устройства. Правда, в известных устройствах фазовый угол часто не регистрируется достаточно быстро. В частности, потребуется дооснащение для достаточно быстрой регистрации относительного угла и передачи зарегистрированной величины в блок управления. Для этого обычно имеет смысл подача тактовых импульсов примерно от 4 мс. до 20 мс. Как правило, кроме всего прочего нужно модифицировать по сравнению с уровнем техники только устройства управления.

Далее приводится более подробное описание изобретения при помощи фигур. На них показаны:

Фиг. 1. Взаимосвязь различных углов сцепления при различных относительных ускорениях, исходя из исходной разницы частоты вращения в 1 Гц и исходной угловой разницы равной нулю;

Фиг. 2. Разница заданной частоты вращения в зависимости от угла рассогласования исходя из исходной разницы частоты вращения 1 Гц и исходной угловой разницы - 3600°;

Фиг. 3. В качестве примера ход кривой частоты вращения газовой турбины и паровой турбины;

Фиг. 4. Ход кривой угла рассогласования при сцеплении и угол проворачивания при сцеплении;

Фигуры 5, 6 и 7. Принцип сцепления с задаваемым углом рассогласования.

На фиг. 1 показан угол рассогласования во время ускорения паровой турбины для различных постоянных параметров ускорения в зависимости от соответствующей разницы частоты вращения. На оси координат показана разница частоты вращения газовой турбины относительно паровой турбины в Гц. На оси абсцисс - угол рассогласования в градусах, причем также целое кратное также сложено из 360°.

Самая верхняя пунктирная кривая показывает взаимосвязи при параметре ускорения 0,025 Гц/с, средняя точечная кривая - при параметре ускорения 0,05 Гц/с, а нижняя сплошная линия - при параметре ускорения 0,075 Гц/с. Это более подробно разъясняется посредством средней кривой.

В качестве исходной точки рассматривается точка в левом, нижнем конце кривой. Разница угла между газовой турбиной и паровой турбиной составляет ноль, разница частоты вращения - 1 Гц. В частности, газовая турбина вращается на 1 Гц больше, чем паровая турбина. В этой точке, то есть при этой исходной разнице частоты вращения паровой турбины, должна начинаться целенаправленная установка угла сцепления.

Паровая турбина ускоряется с постоянным ускорением 0,05 Гц/с относительно газовой турбины, пока обе турбины не будут иметь одинаковую частоту вращения. Более быстрая до этого времени газовая турбина перекрывает до момента времени, в который паровая турбина имеет одинаковую скорость, угол на 3600° больший, чем паровая турбина, в частности, она получает в этот период на десять оборотов больше, чем паровая турбина. Следует отметить, что ось времени на чертеже не изображена. На кривой видно, как уменьшается изменение угла рассогласования между газовой турбиной и паровой турбиной, чем больше сближаются скорости, т.е. чем меньше разница частоты вращения. Как это далее видно из разных кривых, пересекаемый угол до начала сцепления тем больше, чем меньше ускорение. Этот эффект существенно привязан к управлению выбранным целевым углом сцепления.

При других параметрах ускорения и других стартовых углах рассогласования в количественном отношении имеют значение другие взаимосвязи, однако в остальном соображения аналогичны. Например, при стартовом угле рассогласования - 3600° и относительном ускорении 0,05 Гц целевой угол сцепления на начало сцепления составлял бы 0°.

На фиг. 2 представлено обратное изображение фиг. 1, причем изображена только кривая с параметром ускорения 0,05 Гц/с. Стартовый угол рассогласования установлен в данном случае по сравнению с фиг. 1 на - 3600° для достижения номинально целевого угла сцепления 0°. На оси координат нанесен угол рассогласования в градусах, причем нанесены целые кратные, сложенные из 360°. На оси абсцисс разница частоты вращения газовой турбины относительно паровой турбины нанесена в Гц.

Таким образом, на фиг. 2 показана зависимость разницы частоты вращения от угла рассогласования при постоянном относительном ускорении 0,05 Гц/с. При этом при совпадающей частоте газовой турбины и паровой турбины допускается угол рассогласования 0°. Для выбранного ускорения 0.05 Гц/с на фиг. 2 изображена центральная кривая заданного параметра. В частности, например, разница скорости между газовой турбиной и паровой турбиной при разнице угла 900° должна составлять - 0.5 Гц. То есть, при разнице угла 900° паровая турбина на еще около 0,5 Гц медленнее газовой турбины. В идеальном случае на фиг. 2 описана взаимосвязь между перекрытым углом и разницей частоты вращения между паровой турбиной и газовой турбиной.

Если в реальном устройстве при измеренном угле рассогласования -900° разница скорости больше, то при постоянном ускорении 0,05 Гц/с достигают не целевого угла 0°, а гораздо большего угла. В этом случае паровая турбина слишком медленна; ее нужно сильнее разгонять. И наоборот, если в реальном устройстве при измеренном угле рассогласования - 900° разница скорости меньше, то при постоянном ускорении 0.05 Гц/с достигают не целевого угла 0°, а меньшего целевого угла. В этом случае паровая турбина слишком быстрая и ее нужно тормозить.

Процесс сцепления как таковой, изображен на фиг. 3. На оси координат время нанесено в секундах, а на оси абсцисс - частота вращения. Сначала паровая турбина медленнее газовой турбины, однако разгоняется относительно нее. Частота вращения газовой турбины составляет постоянно около 50 Гц, что изображено точечной линией. Скорость паровой турбины отображается сплошной линией. К моменту времени, при котором паровая турбина имеет одинаковую скорость с газовой турбиной, начинается процесс сцепления. В частности, начинается включение соединительной муфты. Сначала паровая турбина продолжает разгоняться, при этом перегоняет газовую турбину и переходит в упор с соединительной муфтой. В этом положении происходит притормаживание. Затем оба вала турбин вращаются с одинаковой частотой вращения.

Воздействие сцепления на угол рассогласования показано на фиг. 4. На оси координат снова нанесено время в секундах, а на оси абсцисс - разница угла поворота в градусах. Пунктирной линией показан заданный параметр угловой разницы, составляющий в данном случае 0°. Сплошная, сначала проходящая внизу линия показывает ход кривой по времени фактической угловой разницы. Сначала угол поворота паровой турбины на 250° меньше угла поворота газовой турбины. Эта разница угла поворота сначала быстро уменьшается вплоть до разницы в ноль градусов. Затем разница угла поворота снова возрастает, в данном случае - почти на 20°. Причина состоит в том, что при вворачивании во втулку соединительной муфты происходит обратный поворот паровой турбины на угол проворачивания при сцеплении. Ход кривой угла проворачивания при сцеплении можно видеть по точечной линии.

Таким образом при выборе задаваемого целевого угла сцепления следует учитывать, что при сцеплении происходит изменение разницы угла поворота на угол проворачивания при сцеплении.

Фигуры 5, 6 и 7 показывают схематически регулирование для осуществления описанного выше способа.

Фиг. 5 дает обзор всего процесса разгона паровой турбины. До заданной разницы скорости (в данном случае выбран 1 Гц) паровая турбина разгоняется через заданный порог. При разнице скорости 1 Гц, в частности, при исходной частоте вращения, происходит переключение на сцепление с регулируемым целевым углом. Для этого регистрируют актуальную разницу угла в диапазоне от 0° до 360° и уменьшают на угловой диапазон, который газовая турбина перекрывала бы при сохранении прежнего ускорения паровой турбины до начала сцепления. Это нужно пояснить на одном примере. Разница частоты вращения между газовой турбиной и паровой турбиной составляет 1 Гц, паровая турбина разгоняется 0,05 Гц/с. До того момента времени, в котором газовая турбина и паровая турбина имеют одинаковую скорость, проходит двадцать секунд. При этом пройденный угол рассогласования составляет в 3600°.

На фиг. 6 описано само регулирование целевого угла сцепления. Разница между углом поворота паровой турбины и углом поворота газовой турбины, то есть угол рассогласования, переводится посредством характеристической кривой в разницу заданной частоты вращения между паровой турбиной и газовой турбиной. В частности, заданная частота вращения паровой турбины устанавливается в зависимости от частоты вращения газовой турбины и угла рассогласования. При этом фактор K' дает дополнительную возможность продолжать увеличение этой разницы заданной частоты вращения. При этом фактор K' является обратным фактором разницы регулирования, в частности, отклонения фактического параметра от заданного параметра. Тем самым он является пропорциональным регулятором. Его нужно анализировать и устанавливать отдельно, принимая во внимание свойства получаемого общего контура регулирования. Стандартная заданная величина K=1. При сложении с частотой вращения газовой турбины получается заданная частота вращения паровой турбины.

Применение "регулируемого смещения" позволяет выставлять всю машинную заданную величину на целевой угол, равный нулю. Отклоняющийся от нуля требуемый целевой угол смещается посредством этого смещения таким образом, что можно использовать стандартную кривую для взаимосвязи Δϕ к Δnsoll. Тогда при такой исходной посылке можно ограничить расчеты до требуемого целевого угла 0°.

На фиг. 7 проиллюстрировано влияние и выбор стартового угла ϕ0. Фактическое измерение дает первоначально угол в диапазоне от 0° до 360°. Это более детально разъясняется далее.

При ускорении паровой турбины относительно газовой турбины при постоянном ускорении k Гц /с для преодоления исходной разницы частоты вращения Δϕ0 требуется время t=Δϕ0/k. В это время система преодолевает относительную угловую разницу, которая (Δϕ0) 2/(2*k) соответствует всем оборотам. Если бы угол рассогласования соответствовал при стартовой разнице частоты вращения Δϕ0, в частности, случайно -360* (Δϕ0) 2/(2*k), то подошло бы постоянное ускорение k для достижения целевого угла 0°. При любой другой разнице стартового угла ускорение должно изменяться для достижения целевого угла 0°. Если теперь установить стартовый угол -360°*(Δϕ0) 2/(2*k) + измеренный угол, то это значит, что турбина должна получить в отношении ускорения к до исходной частоты вращения несколько увеличенное ускорение. Небольшое повышение ускорения во время регулируемой установки целевого угла сцепления оказалось предпочтительнее, чем небольшое уменьшение ускорения. Выбранная исходная посылка для установки угла рассогласования при стартовой разнице частоты вращения, как описано выше, всегда обеспечивает небольшое повышение ускорения. На численном примере: лучше исходить из того, что паровая турбина должна опережать на 270°, чем отставать на 90°.

Хотя изобретение детально проиллюстрировано и описано посредством предпочтительного примера выполнения, оно все же не ограничивается опубликованными примерами, специалист может извлечь из него и другие варианты, не выходя из объема правовой охраны изобретения.


СПОСОБ СЦЕПЛЕНИЯ ПАРОВОЙ ТУРБИНЫ И ГАЗОВОЙ ТУРБИНЫ С ЗАДАВАЕМЫМ УГЛОМ РАССОГЛАСОВАНИЯ
СПОСОБ СЦЕПЛЕНИЯ ПАРОВОЙ ТУРБИНЫ И ГАЗОВОЙ ТУРБИНЫ С ЗАДАВАЕМЫМ УГЛОМ РАССОГЛАСОВАНИЯ
СПОСОБ СЦЕПЛЕНИЯ ПАРОВОЙ ТУРБИНЫ И ГАЗОВОЙ ТУРБИНЫ С ЗАДАВАЕМЫМ УГЛОМ РАССОГЛАСОВАНИЯ
СПОСОБ СЦЕПЛЕНИЯ ПАРОВОЙ ТУРБИНЫ И ГАЗОВОЙ ТУРБИНЫ С ЗАДАВАЕМЫМ УГЛОМ РАССОГЛАСОВАНИЯ
СПОСОБ СЦЕПЛЕНИЯ ПАРОВОЙ ТУРБИНЫ И ГАЗОВОЙ ТУРБИНЫ С ЗАДАВАЕМЫМ УГЛОМ РАССОГЛАСОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 481-490 из 1 427.
20.11.2015
№216.013.90c4

Электрический коммутационный аппарат

Электрический коммутационный аппарат имеет блок прерывателя с первым (10) и вторым (11) соединительными проводами. Блок прерывателя расположен внутри непроницаемого для текучей среды герметизированного корпуса (1), заполненного электрически изолирующей текучей средой. При этом блок прерывателя...
Тип: Изобретение
Номер охранного документа: 0002568676
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9211

Устройство для предварительного нагревания стального скрапа и снабженная им металлургическая плавильная емкость

Изобретение относится к области металлургии и может быть использовано для предварительного нагрева подлежащего загрузке в металлургический плавильный ковш стального скрапа. Устройство содержит окруженную стенкой корпуса для приема стального скрапа вертикальную шахту и по меньшей мере один,...
Тип: Изобретение
Номер охранного документа: 0002569009
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9271

Способ обработки отходящего газа, содержащего диоксид углерода

Изобретение относится к способу обработки отходящего газа, содержащего диоксид углерода, и используется при пуске и останове конвертера. К отходящему газу подводится углеводородсодержащий газ, и диоксид углерода отходящего газа в реакции с углеводородом, по меньшей мере, частично превращается в...
Тип: Изобретение
Номер охранного документа: 0002569105
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.934a

Ускоритель для двух пучков частиц для создания столкновения

Изобретение относится к ускорителю для ускорения и столкновения двух пучков заряженных частиц. Заявленное устройство содержит устройство формирования потенциального поля для формирования электростатического потенциального поля, которое создается таким образом, что посредством...
Тип: Изобретение
Номер охранного документа: 0002569324
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.946a

Устройство для поворота ротора турбомашины из первого положения во второе положение

Изобретение относится к машиностроению и может быть использовано для установки ротора турбомашины, в частности для поворота ротора из горизонтального положения в вертикальное. Ротор имеет несколько роторных дисков, которые стянуты друг с другом по меньшей мере одним стяжным болтом. Устройство...
Тип: Изобретение
Номер охранного документа: 0002569613
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9515

Способ регулирования радиальных зазоров, имеющихся между вершинами рабочих лопаток и стенкой канала

Изобретение касается способа для регулирования радиальных зазоров, имеющихся между вершинами рабочих лопаток и стенкой канала турбомашины при монтаже турбомашины, при котором перед пуском в эксплуатацию турбомашины регистрируются радиальные зазоры. Сенсор не является термостойким в отношении...
Тип: Изобретение
Номер охранного документа: 0002569784
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9517

Устройство резонатора для демпфирования колебаний давления в камере сгорания и способ для управления системой сгорания

Устройство резонатора, предназначенное для демпфирования колебаний давления в камере сгорания, содержит контейнер, заполненный газом, отверстие в контейнере и нагревательный элемент, выполненный с возможностью генерировать пламя. Пламя предназначено для нагрева газа в контейнере. Нагревательный...
Тип: Изобретение
Номер охранного документа: 0002569786
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9591

Устройство для измерения состава потока многофазной смеси

Использование: для измерения состава потока многофазной смеси. Сущность изобретения заключается в том, что устройство для измерения состава потока многофазной смеси содержит измерительную трубку (1), формирующую трубопровод для потока многофазной смеси, средство (2) излучения для облучения...
Тип: Изобретение
Номер охранного документа: 0002569909
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9592

Система и способ обнаружения повреждений и система электропитания кабелей для непосредственного электрического нагрева подводных трубопроводов

Изобретение относится к обнаружению повреждений кабелей. Сущность: система обнаружения повреждений содержит первый амперметр для измерения первого фазного тока, второй амперметр для измерения второго фазного тока, третий амперметр для измерения третьего фазного тока, первый блок вычисления для...
Тип: Изобретение
Номер охранного документа: 0002569910
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9719

Способ управления компрессором

Изобретение относится к способу управления компрессором. Способ содержит следующие этапы: а) передача по меньшей мере одного заданного значения параметра компрессора, b) определение по меньшей мере двух значений регулирующего воздействия по меньшей мере двух исполнительных элементов компрессора...
Тип: Изобретение
Номер охранного документа: 0002570301
Дата охранного документа: 10.12.2015
Показаны записи 481-490 из 945.
20.10.2015
№216.013.846c

Подводная система обмена данными и способ обмена данными

Изобретение относится к технике связи и предназначено для обмена данными между надводной системой управления и подводной установкой. Технический результат - повышение пропускной способности. Для этого надводная система управления содержит надводный низкочастотный модем, адаптированный для...
Тип: Изобретение
Номер охранного документа: 0002565503
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84be

Электрическая машина, рельсовое транспортное средство и рельсовый подвижной состав

Настоящее изобретение касается электрической машины, рельсового транспортного средства и рельсового подвижного состава. Технический результат - предотвращение как подшипниковых токов, так и обратных тяговых токов. Электрическая машина имеет основную часть, в которой расположен статор...
Тип: Изобретение
Номер охранного документа: 0002565585
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84bf

Компоновка блока питания с использованием модульных электронных модулей

Изобретение относится к электротехнике, к конструкциям и компоновкам блоков питания. Технический результат состоит в повышении надежности. Корпус блока питания включает отделение управления, выполненное с возможностью принимать один или более управляющих компонентов, трансформаторное отделение,...
Тип: Изобретение
Номер охранного документа: 0002565586
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86cc

Пирометаллургическая установка, снабженная загрузочным элементом

Изобретение относится к области металлургии и может быть использовано для пирометаллургических установок. Загрузочная область установки закрыта сверху и с боковых сторон колпаком с верхними вытяжными отверстиями, через которые скапливающиеся в колпаке отходящие газы и пыль...
Тип: Изобретение
Номер охранного документа: 0002566111
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86db

Способ функционирования поточной линии, сборочный прицеп, буксирная тяга, тяжелая машина, установленная на сборочном прицепе, и поточная линия

Изобретение относится к области сборки тяжелых машин, например обтекателей (3) ветровых турбин, на поточной линии (1), содержащей две или более сборочные станции (А, А,А, А, А, А). Способ содержит этапы, на которых устанавливают подготовленный сборочный прицеп (5, 5а, 5b, …, 5n-2, 5n-1, 5n) в...
Тип: Изобретение
Номер охранного документа: 0002566126
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8746

Сквозное переходное устройство для смазочно-охлаждающей эмульсии для использования с инструментами станков с полым шпинделем

Группа изобретений относится к машиностроению и может быть использована при обработке шлифовальными или другими инструментами на станах с полым шпинделем. Переходное устройство содержит входное отверстие в своей первой части для соединения с центральным проходом вала, по меньшей мере одно...
Тип: Изобретение
Номер охранного документа: 0002566233
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.885a

Рельсовое транспортное средство

Изобретение касается железнодорожного транспорта. Рельсовое транспортное средство (1) включает по меньшей мере один держатель (20) приборов, расположенный в области середины поперечной оси рельсового транспортного средства (1) между крышей (10) и облицовкой потолка. В держатель (20) приборов...
Тип: Изобретение
Номер охранного документа: 0002566509
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8906

Приводная система силового выключателя

Приводная система силового выключателя имеет поворотный приводной рычаг (17), взаимодействующий с блокировочным элементом (14), имеющим перемещаемые в зону поворота приводного рычага (17) первую зону (27) блокирования и первую зону (28) деблокирования. Блокировочный элемент (14) имеет вторую...
Тип: Изобретение
Номер охранного документа: 0002566681
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8912

Система слоев с двухслойным металлическим слоем

Изобретение относится к защитному коррозионно-стойкому покрытию, нанесенному на подложку (4) из жаропрочного сплава. Указанное покрытие содержит по меньшей мере двухслойный металлический слой (7, 10), состоящий по меньшей мере из одного нижнего (7) и верхнего (10) слоя на нижнем слое (7)....
Тип: Изобретение
Номер охранного документа: 0002566693
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.89bf

Камера сгорания газовой турбины

Камера сгорания газовой турбины содержит пилотную топливную форсунку, расположенную в среднем участке цилиндра, открывающегося на одном конце в камеру сгорания. Пилотная топливная форсунка содержит топливную форсунку, а также радиально отстоящую вокруг внешнего периметра топливной форсунки...
Тип: Изобретение
Номер охранного документа: 0002566866
Дата охранного документа: 27.10.2015
+ добавить свой РИД