×
19.01.2018
218.016.0242

СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ РАСТВОРИТЕЛЯ В НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002630014
Дата охранного документа
05.09.2017
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к скважинной добыче нефти, осложненной выпадением асфальтосмолопарафиновых веществ на поверхности глубинного оборудования скважин. Техническим результатом является повышение эффективности эксплуатации скважин, осложненных образованием отложений из тяжелых компонентов нефти внутри частей глубинного насоса и колонны НКТ. Способ определения массы растворителя в нефтедобывающей скважине заключается в измерении давления столба жидкости на площадь известной величины. Причем датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется как произведение величины кратковременного изменения (скачка) давления на площадь межтрубного пространства по математической формуле. 3 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к нефтяной промышленности и предназначено для совершенствования технологий по удалению асфальтосмолопарафиновых отложений с подземного оборудования нефтедобывающих скважин.

Несмотря на применение ингибиторов парафинообразования при подъеме нефти по колонне лифтовых труб из-за изменения термобарических условий из нее выпадают и адгезируют на поверхности насосно-компрессорных труб (НКТ) асфальтосмолопарафиновые вещества (АСПВ). Для их удаления часто используют органические растворители путем их закачки в межтрубное пространство. После организации круговой циркуляции растворитель попадает на прием глубинного насоса и постепенно поднимается в полость колонны НКТ, тем самым выполняет важную функцию - растворяет АСПВ. Как правило, на нефтегазодобывающем предприятии заливки органического растворителя осуществляют в планово-предупредительном режиме по утвержденным технологическим картам. Доставка реагента в объеме 500-1000 литров и более в межтрубное пространство скважины организуется двумя способами:

1. С помощью передвижного насосного агрегата типа ЦА-320 без снижения давления газа в межтрубном пространстве скважины (МП).

2. Без агрегата типа ЦА-320 с предварительным выпуском попутного нефтяного газа в атмосферу. Растворитель сливается в МП из автоцистерны самотеком через гофрированный шланг.

По второй технологии при отсутствии счетного устройства или мерной тары на устье скважины массу слитого растворителя определяют приближенно по степени снижения уровня жидкости в емкости автоцистерны. Это приводит к значительной погрешности в измерении массы слитого растворителя, так как емкость автоцистерны имеет эллиптическую форму и не имеет тарировки объема жидкости по высоте жидкости от нижней образующей автоцистерны. На точность также влияет и степень горизонтальности положения автомашины у устья скважины. В скважину, успешно работающую, могут залить только часть от объема реагента, положенного по технологической карте. Оставшуюся часть растворителя технический персонал предприятия, как правило, использует для аварийных промывок других скважин, осложненных АСПО. Возникает техническая задача определения массы органического растворителя в полости скважины с тем, чтобы при статистическом анализе оценить влияние массы растворителя на эффективность удаления АСПО и степень восстановления показателей работы нефтедобывающей скважины: дебит по жидкости, величина нагрузок на глубинный насос.

Известен способ решения поставленной задачи, основанный на измерении уровня жидкости в межтрубном пространстве до и после закачки растворителя путем эхолотирования МП уровнемерами типа Микон или Судос. Для осуществления этих измерений необходимо чтобы вместе с автоцистерной от скважины к скважине перемещался и оператор по исследованию скважин с уровнемером.

Известен способ определения массы растворителя, основанный на измерении его объема в тарированной по объему мерной емкости. Необходимо по способу знать и плотность растворителя при той температуре, при которой ее слили в мерную емкость и скважину. Необходимо вместе с автоцистерной возить на обрабатываемую скважину лаборанта химического анализа с набором ареометров типа АОН-1.

Новая техническая задача по изобретению состоит в том, чтобы после подачи растворителя в межтрубное пространство его масса определялась точным образом в автоматическом режиме без участия человека.

Поставленная задача выполняется тем, что по способу определения массы растворителя в нефтедобывающей скважине, заключающемуся в измерении давления столба жидкости на площадь известной величины, датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется в зависимости от величины кратковременного изменения (скачка) давления и площади межтрубного пространства скважины по формуле:

где

Мраст - масса растворителя в скважине после его закачки, кг;

D - внутренний диаметр обсадной колонны, м2;

d - внешний диаметр колонны лифтовых труб (насосно-компрессорных труб - НКТ), м2;

P1 - показание датчика давления до начала подачи растворителя в межтрубное пространство скважины, Па;

Р2 - показание датчика давления после окончания процесса подачи растворителя в межтрубное пространство скважины, Па;

g - ускорение свободного падения, м/с2.

В схематичном виде подача растворителя в скважину самотеком из автоцистерны и способ оценки массы этого растворителя приведены на фиг. 1, где обозначены: 1 - обсадная колонна скважины, 2 - колонна НКТ, 3 - глубинный насос, 4 - кабель обратной информационной связи, 5 - датчик давления, 6 - вентиль обсадной колонны, 7 - гофрированный шланг, 8 - автоцистерна с растворителем, 9 - вентиль автоцистерны, 10 - поступивший в скважину растворитель массой Мраст, 11 - асфальтосмолопарафиновые отложения в колонне НКТ, 12 - станция управления скважиной.

Способ измерения массы растворителя при его доставке в скважину самотеком осуществляется в следующем порядке.

1. В межтрубное пространство скважины в зоне глубинного насоса 3 стационарно располагают датчик давления 5 с линией обратной связи 4 со станцией управления 12 на поверхности земли. В качестве канала обратной связи может служить электрический многожильный кабель, например кабель электропитания глубинного электроцентробежного насоса.

2. Для доставки растворителя в скважину предварительно из межтрубного пространства (МП) выпускают попутный нефтяной газ через вентиль 6. После этой процедуры давление в МП становится равным атмосферному.

3. К открытому вентилю 6 подсоединяют гофрированный шланг 7. Другой конец шланга соединяют через вентиль 9 с автоцистерной 8.

4. Вентиль 9 открывают, после чего растворитель начинает поступать в межтрубное пространство скважины.

5. После того как приближенно измеренный объем растворителя сливается самотеком в скважину закрывают вентиль 9, сливают содержимое шланга 7 в скважину и закрывают вентиль 6.

6. Автоцистерна уезжает на другую обрабатываемую скважину.

7. Датчик давления 5 в режиме реального времени на день обработки скважины растворителем выдает на станцию управления 12 и далее на компьютер инженерного персонала предприятия информацию в виде динамики давления в зоне глубинного насоса. Зависимость имеет вид, представленный на фиг. 2.

Зависимость интерпретируется следующим образом. До открытия вентиля 6 и выпуска нефтяного газа из скважины давление в зоне датчика 5 остается постоянной величиной (45 атм) и равной сумме давлений столба жидкости над датчиком (30 атм) и давления газа над динамическим уровнем жидкости в межтрубном пространстве (15 атм). В 1200 хронологического времени (условное время) задвижку 6 открывает оператор по добыче нефти, и в течение 12 минут нефтяной газ выходит в атмосферу, а избыточное давление газа снижается до нуля. По графику видно, что давление в зоне насоса снижается до 30 атм, то есть на 15 атм. Сразу после этой процедуры растворитель в течение 7 минут поступает в межтрубное пространство, и за счет растущего во времени гидростатического столба растворителя рассматриваемое давление, в конечном счете, вырастает до 37 атм. По формуле 1 контроллер станции управления рассчитывает массу растворителя в межтрубном пространстве скважины:

Полученная по изобретению информация важна с двух позиций. По данным станции управления непосредственно на скважине при соответствующей аппаратуре можно наблюдать за ростом массы растворителя в скважине и доставить в скважину необходимую по технологической карте массу растворителя. Вторая функция - контролирующая. После проведения всех обработок скважин за определенное время (декада или месяц) по данным станции управления за дни обработок можно узнать и хронологическое время обработки, и использованную массу растворителя. В дальнейшем статистическом анализе такая точная информация даст возможность выявлять значимые факторы успешности рассматриваемых обработок и совершенствовать технологии удаления асфальтосмолопарафиновых отложений со скважин.

Несколько иной вид зависимости давления в зоне глубинного насоса получается при использовании насосного агрегата типа ЦА-320. При такой технологии попутный нефтяной газ из межтрубного пространства не выпускается, а растворитель закачивается в МП под давлением насосного агрегата. Датчик давления выдает в день обработки скважины информацию, представленную на фиг. 3. Из динамики давления видно, что закачка растворителя была произведена в 1200, и давление в зоне датчика (насоса) выросло на 5,5 атм с 45 до 50,5 атм. По формуле 1 рассчитывается масса закачанного в скважину растворителя:

Датчики давления смогут выполнять в умных скважинах недалекого будущего много функций. Они работают во всех средах независимо от количества налипшего на них АСПВ, так как давление способно передаваться через несплошные среды.

В изобретении предложен способ определения массы растворителя, доставленного в скважину. Способ основан на известном законе физики: давление - это сила, приходящаяся на единицу рассматриваемой площади. Новизной и существенным отличием нашего предложения является, на наш взгляд, то, что предложено датчик давления использовать как измерительное устройство, ведь площадь до и после технологического воздействия остается величиной постоянной и равной площади кольцевого пространства между обсадной колонной и колонной насосно-компрессорных труб. Датчик давления предложено в условиях скважины использовать как устройство по измерению массы растворителя.


СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ РАСТВОРИТЕЛЯ В НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ РАСТВОРИТЕЛЯ В НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ РАСТВОРИТЕЛЯ В НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 48.
10.01.2013
№216.012.1a82

Электрогенератор станка-качалки скважины

Предполагаемое изобретение относится к области электротехники, в частности - к устройствам по выработке электроэнергии, и может быть использовано в конструкции станка-качалки добывающей скважины. Вращение противовеса кривошипно-шатунного механизма станка-качалки (СК) предложено преобразовать во...
Тип: Изобретение
Номер охранного документа: 0002472278
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1df3

Скважинный электрогенератор

Изобретение относится к электротехнике, к устройствам выработки электрической энергии и может найти применение в конструкции добывающих скважин, имеющих станки-качалки (СК). Технический результат состоит в расширении эксплуатационных возможностей. Предложено заменить противовесы...
Тип: Изобретение
Номер охранного документа: 0002473161
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.277c

Способ промывки скважинного погружного электроцентробежного насоса реагентом

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. При осуществлении способа реагент подают в полость насоса через клапан обратный трехпозиционный (КОТ), установленный над выкидным отверстием насоса. Подачу и сбор реагента...
Тип: Изобретение
Номер охранного документа: 0002475628
Дата охранного документа: 20.02.2013
27.05.2013
№216.012.44e4

Устьевой турбулизатор скважинной продукции

Изобретение относится к горному делу и может быть использовано для перемешивания газожидкостной продукции в трубопроводе. Техническим результатом является повышение объективности в оценке добывающих возможностей скважин и состава транспортируемой по трубам промысловой жидкости. Устройство...
Тип: Изобретение
Номер охранного документа: 0002483213
Дата охранного документа: 27.05.2013
20.07.2013
№216.012.57d4

Способ определения концентрации газа в жидкости

Способ предусматривает определение концентрации газа в жидкости методом дегазации пробы жидкости и замера количества выделенного газа химическим индикатором. К существующей схеме анализа добавлена газосборная камера, в которую собирается газовоздушная смесь (ГВС), полученная в процессе...
Тип: Изобретение
Номер охранного документа: 0002488092
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7387

Способ очистки колонны лифтовых труб от асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной...
Тип: Изобретение
Номер охранного документа: 0002495232
Дата охранного документа: 10.10.2013
20.12.2013
№216.012.8e11

Способ определения объема отсепарированного попутного нефтяного газа

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС). Способ реализуется на основании периодических измерений содержания сероводорода в поступающей на УПСВ или ДНС...
Тип: Изобретение
Номер охранного документа: 0002502052
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.950b

Глубинный плунжерный насос

Изобретение относится к нефтедобывающей промышленности и служит для повышения эффективности эксплуатации глубинных плунжерных насосов. В полость насоса и на приеме насоса помещают датчики измерения давления. Всасывающий клапан выполняют в виде электромагнитного клапана, конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002503849
Дата охранного документа: 10.01.2014
20.04.2014
№216.012.bc21

Способ промывки скважинного глубинного электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента...
Тип: Изобретение
Номер охранного документа: 0002513889
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bc24

Способ определения остаточного содержания газа в жидкости

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод. Способ включает в себя процедуры нахождения...
Тип: Изобретение
Номер охранного документа: 0002513892
Дата охранного документа: 20.04.2014
Показаны записи 1-10 из 61.
10.01.2013
№216.012.1a82

Электрогенератор станка-качалки скважины

Предполагаемое изобретение относится к области электротехники, в частности - к устройствам по выработке электроэнергии, и может быть использовано в конструкции станка-качалки добывающей скважины. Вращение противовеса кривошипно-шатунного механизма станка-качалки (СК) предложено преобразовать во...
Тип: Изобретение
Номер охранного документа: 0002472278
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1df3

Скважинный электрогенератор

Изобретение относится к электротехнике, к устройствам выработки электрической энергии и может найти применение в конструкции добывающих скважин, имеющих станки-качалки (СК). Технический результат состоит в расширении эксплуатационных возможностей. Предложено заменить противовесы...
Тип: Изобретение
Номер охранного документа: 0002473161
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.277c

Способ промывки скважинного погружного электроцентробежного насоса реагентом

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. При осуществлении способа реагент подают в полость насоса через клапан обратный трехпозиционный (КОТ), установленный над выкидным отверстием насоса. Подачу и сбор реагента...
Тип: Изобретение
Номер охранного документа: 0002475628
Дата охранного документа: 20.02.2013
27.05.2013
№216.012.44e4

Устьевой турбулизатор скважинной продукции

Изобретение относится к горному делу и может быть использовано для перемешивания газожидкостной продукции в трубопроводе. Техническим результатом является повышение объективности в оценке добывающих возможностей скважин и состава транспортируемой по трубам промысловой жидкости. Устройство...
Тип: Изобретение
Номер охранного документа: 0002483213
Дата охранного документа: 27.05.2013
20.07.2013
№216.012.57d4

Способ определения концентрации газа в жидкости

Способ предусматривает определение концентрации газа в жидкости методом дегазации пробы жидкости и замера количества выделенного газа химическим индикатором. К существующей схеме анализа добавлена газосборная камера, в которую собирается газовоздушная смесь (ГВС), полученная в процессе...
Тип: Изобретение
Номер охранного документа: 0002488092
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7387

Способ очистки колонны лифтовых труб от асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной...
Тип: Изобретение
Номер охранного документа: 0002495232
Дата охранного документа: 10.10.2013
20.12.2013
№216.012.8e11

Способ определения объема отсепарированного попутного нефтяного газа

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС). Способ реализуется на основании периодических измерений содержания сероводорода в поступающей на УПСВ или ДНС...
Тип: Изобретение
Номер охранного документа: 0002502052
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.950b

Глубинный плунжерный насос

Изобретение относится к нефтедобывающей промышленности и служит для повышения эффективности эксплуатации глубинных плунжерных насосов. В полость насоса и на приеме насоса помещают датчики измерения давления. Всасывающий клапан выполняют в виде электромагнитного клапана, конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002503849
Дата охранного документа: 10.01.2014
20.04.2014
№216.012.bc21

Способ промывки скважинного глубинного электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента...
Тип: Изобретение
Номер охранного документа: 0002513889
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bc24

Способ определения остаточного содержания газа в жидкости

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод. Способ включает в себя процедуры нахождения...
Тип: Изобретение
Номер охранного документа: 0002513892
Дата охранного документа: 20.04.2014
+ добавить свой РИД