×
19.01.2018
218.016.01d4

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ УСКОРИТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002629948
Дата охранного документа
05.09.2017
Аннотация: Изобретение относится к cпособу определения размеров фокусного пятна тормозного излучения ускорителя. Заявленный способ включает последовательное облучение тормозным излучением щелевого коллиматора, выполненного в виде блоков из тяжелого металла со щелью между ними, при разных размерах щели коллиматора, измерение детектором позитронов распределений позитронного излучения из расположенного за щелевым коллиматором конвертера тормозного излучения в позитронное в зависимости от координат для каждого размера щели коллиматора и определение размера фокусного пятна по распределениям позитронного излучения в зависимости от координат. Техническим результатом является возможность определения размера фокусного пятна высокоэнергетической части спектра тормозного излучения ускорителя. 3 ил.

Изобретение относится к ускорительной технике и предназначено для использования при разработке источников тормозного излучения на основе ускорителей электронов и при контроле их параметров при использовании в дефектоскопии и промышленной томографии толстостенных объектов.

Известен способ определения размеров фокусного пятна источника тормозного излучения, реализуемый устройством для определения размеров фокусных пятен источников тормозного излучения [SU 313185 А1, МПК6 H01J 35/14, опубл. 01.01.1971], который включает облучение тормозным излучением щелевого коллиматора, выполненного в виде блоков из тяжелого металла с калиброванной щелью между ними, и детектора в виде рентгеновской пленки, измерение распределения дозы тормозного излучения в детекторе в зависимости от координат и определение размера фокусного пятна по распределению дозы тормозного излучения в детекторе в зависимости от координат.

Известен способ определения размеров фокусного пятна тормозного излучения ускорителя [Gambaccini М., Cardarelli P., Taibi A., et al. Measurement of focal spot size in a 5.5 MeV linac. Nuclear Instruments and Methods in Physics Research B, v. 269 (2011), p. 1157-1165.], взятый за прототип, который включает последовательное облучение тормозным излучением щелевого коллиматора, выполненного в виде блоков из тяжелого металла со щелью между ними, и детектора тормозного излучения при разных размерах щели коллиматора, измерение распределений дозы тормозного излучения детектором тормозного излучения за щелевым коллиматором в зависимости от координат для каждого размера щели коллиматора и определение размера фокусного пятна по распределениям дозы тормозного излучения в зависимости от координат при облучении щелевого коллиматора при разных размерах щели.

Распределение в фокусном пятне тормозного излучения квантов высокоэнергетической части спектра отличается от распределения квантов низкоэнергетической части спектра. При этом значительное преобладание квантов низкой энергии в спектре тормозного излучения приводит фактически к измерению фокусного пятна низкоэнергетической части спектра тормозного излучения, а не к практически важной для контроля толстостенных объектов высокоэнергетической части.

Задачей настоящего изобретения является определение размеров фокусного пятна высокоэнергетической части спектра тормозного излучения.

Поставленная задача решена за счет того, что способ определения размеров фокусного пятна тормозного излучения ускорителя, также как в прототипе, включает операции последовательного облучения тормозным излучением щелевого коллиматора, выполненного в виде блоков из тяжелого металла со щелью между ними, при разных размерах щели коллиматора, измерения детектором распределений излучения за щелевым коллиматором в зависимости от координат для каждого размера щели коллиматора и определения размера фокусного пятна по распределениям излучения в зависимости от координат при облучении щелевого коллиматора при разных размерах щели.

Согласно изобретению измеряют за щелевым коллиматором детектором позитронов распределение позитронного излучения из расположенного за щелевым коллиматором конвертера тормозного излучения в позитронное.

Поскольку выход позитронного излучения является пороговой функцией энергии кванта тормозного излучения, то сигнал детектора позитронов определяется только квантами тормозного излучения с энергией выше пороговой, равной 1.02 МэВ, и значит, по сигналу детектора определяется размер фокусного пятна высокоэнергетической части спектра тормозного излучения.

На фиг. 1 показана схема устройства для реализации способа определения размеров фокусного пятна тормозного излучения ускорителя.

На фиг. 2 показаны распределения сигнала детектора позитронов по координате X при различных размерах щели щелевого коллиматора.

На фиг. 3 показана зависимость ширины на полувысоте распределений сигналов детектора позитронов по координате X от размера щели коллиматора.

Способ определения размеров фокусного пятна тормозного излучения ускорителя осуществляют с помощью устройства, которое содержит основание 1 (фиг. 1), на котором закреплен щелевой коллиматор, выполненный, например, в виде рамки 2 и закрепленных в ней двух блоков 3 из вольфрама с регулируемым расстоянием между их поверхностями, ограничивающими пространство щели с регулируемым размером di в диапазоне, например, от 0,1 до 1,0 мм.

На основании 1 закреплены направляющие 4 платформы перемещения 5, которые расположены перпендикулярно поверхностям блоков 3, ограничивающих пространство щели щелевого коллиматора. На платформе перемещения 5 установлен электромагнит постоянного тока в виде магнитопровода 6 с обмоткой 7 и полюсными наконечниками 8, поверхности которых параллельны направляющим 4 и перпендикулярны входным поверхностям 9 блоков 3 щелевого коллиматора.

Конвертер 10 тормозного излучения в позитронное излучение, выполненный, например, из платиновой проволоки диаметром, например 0.1 мм, расположен перпендикулярно поверхностям полюсных наконечников 8 электромагнита и закреплен на них. Между полюсными наконечниками 8 закреплен детектор позитронов 11, выполненный, например, в виде сцинтилляционного детектора с пластмассовым сцинтиллятором.

В стартовом положении платформы перемещения 5 относительно основания 1 устройство ориентируют относительно мишени 12 ускорителя 13, например, бетатрона, так, чтобы ось пучка тормозного излучения ускорителя находилась в середине щели между блоками 3 щелевого коллиматора и в середине проволочного конвертера. L1 - расстояние между щелевым коллиматором 2 и конвертером 8. L2 - расстояние между мишенью 11 ускорителя 12 и щелевым коллиматором 2.

В каждом импульсе работы ускорителя 12 пучок электронов падает на мишень 11. Выходящее из мишени 12 тормозное излучение создает на расстоянии от мишени, равном (L1+L2), в плоскости положения конвертера 3 поле тормозного излучения, возмущенное щелевым коллиматором 2. Кванты тормозного излучения взаимодействуют с конвертером 8 с образованием выходящих из конвертера 8 электронов, позитронов и вторичных квантов, причем поток позитронов создается только квантами с энергией, превышающей пороговую энергию образования электронно-позитронных пар, равную 1,02 МэВ. Через обмотку электромагнита 7 пропускают постоянный ток от источника постоянного тока и устанавливают его величину, соответствующую, например, максимальному выходному сигналу детектора позитронов 11. В магнитном поле между полюсными наконечниками 8 поток частиц анализируется и на детектор позитронов 11 попадают позитроны с энергией, задаваемой напряженностью магнитного поля (током в обмотке 7 электромагнита), положением детектора позитронов 10 и его размерами. Сигнал детектора позитронов 11, благодаря высокой эффективности регистрации позитронов и низкой эффективности регистрации квантов практически определяется падающими на конвертер 8 квантами тормозного излучения, имеющими энергию более 1.02 МэВ.

Путем перемещения электромагнита вместе с конвертером 10 и детектором позитронов 11 на платформе перемещения 5 вдоль направляющих 4 относительно стартового положения измеряют распределение сигналов детектора позитронов 11 в зависимости от координат положения конвертера 10 по направлению перемещения X, которое соответствует распределению квантов тормозного излучения с энергией, превышающей 1,02 МэВ, вдоль направления перемещения X.

Измеряют распределения Di (i=1, 2, 3, …, n) сигналов детектора позитронов 11 в зависимости от координат положения конвертера 10 по направлению перемещения X при разных размерах di щели коллиматора, например di=1=0,1 мм, di=2=0,2 мм, di=3=0,3 мм, ..., di=6=1,0 мм.

Распределения сигналов детектора позитронов 11 в зависимости от координаты положения конвертера 10 по направлению X при размерах щели коллиматора в диапазоне от 0,1 до 1 мм показаны на фиг. 2.

Зависимость ширины распределений на полувысоте FWHM от размера щели d приведена на фиг. 3. Экстраполяция зависимости к нулевому размеру щели дает ширину на полувысоте нормального распределения квантов по поверхности мишени - эффективный размер фокусного пятна высокоэнергетической части тормозного излучения ускорителя (FWHM_γ).

При необходимости определения размера фокусного пятна в направлении, отличном от X, получают распределение сигнала детектора позитронов 10 при соответствующей ориентации устройства относительно мишени ускорителя.

Предлагаемый способ позволяет определять размер фокусного пятна с практически одинаковой достоверностью для всей высокоэнергетической части спектра тормозного излучения благодаря возрастанию с энергией квантов вероятности рождения электронно-позитронных пар, что компенсирует уменьшение количества квантов с возрастанием их энергии в спектре тормозного излучения.

Способ определения размеров фокусного пятна тормозного излучения ускорителя, включающий последовательное облучение тормозным излучением щелевого коллиматора, выполненного в виде блоков из тяжелого металла со щелью между ними, при разных размерах щели коллиматора, измерение детектором распределений излучения за щелевым коллиматором в зависимости от координат для каждого размера щели коллиматора и определение размера фокусного пятна по распределениям излучения в зависимости от координат при облучении щелевого коллиматора при разных размерах щели, отличающийся тем, что измеряют за щелевым коллиматором детектором позитронов распределение позитронного излучения из расположенного за щелевым коллиматором конвертера тормозного излучения в позитронное.
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ УСКОРИТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ УСКОРИТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ УСКОРИТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ФОКУСНОГО ПЯТНА ТОРМОЗНОГО ИЗЛУЧЕНИЯ УСКОРИТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 259.
13.01.2017
№217.015.7cb9

Способ получения паравольфрамата аммония

Изобретение относится к способу получения паравольфрамата аммония из вольфрамового концентрата. Способ включает автоклавное содовое выщелачивание вольфрамового концентрата, регенерацию содового раствора и возвращение его на выщелачивание, концентрирование вольфрама с помощью ионного обмена на...
Тип: Изобретение
Номер охранного документа: 0002600045
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8481

Устройство для генерации последовательно движущихся капель жидкости

Изобретение относится к области исследования свойств жидкостей, а именно к дозаторам с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов жидкостей и может быть использовано при проведении научных исследований в области гидродинамики, химии, биологии, медицины и др....
Тип: Изобретение
Номер охранного документа: 0002602996
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8507

Способ определения температуры эксплуатации элементов котельного оборудования

Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, при разработке энергетического оборудования и исследовании новых марок сталей. В способе подготавливают образцы элемента котельного оборудования, затем их нагревают,...
Тип: Изобретение
Номер охранного документа: 0002603207
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.85d4

Способ твердофазной экстракции красителя малахитового зеленого

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции тетраметил-4,4-диаминотрифенилметана (малахитового зеленого) из водных растворов. Способ твердофазной экстракции красителя малахитового зеленого включает взаимодействие полимерной матрицы...
Тип: Изобретение
Номер охранного документа: 0002603161
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.897c

Сверхпроводящий быстродействующий выключатель

Использование: для создания сверхпроводящего быстродействующего выключателя. Сущность изобретения заключается в том, что сверхпроводящий быстродействующий выключатель, содержащий отключающий элемент, выполненный в виде двух последовательно соединенных фольговых проводников из сверхпроводящего...
Тип: Изобретение
Номер охранного документа: 0002602767
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89c9

Способ получения водорастворимой композиции наночастиц серебра

Изобретение относится к способам получения высокодисперсных коллоидных частиц или наночастиц серебра, которые могут быть использованы в биотехнологии, медицине и ветеринарии в составе препаратов с антибактериальным действием, а также в производстве катализаторов химических процессов. Способ...
Тип: Изобретение
Номер охранного документа: 0002602741
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8afb

Резонансный свч компрессор

Изобретение относится к области радиотехники. Особенностью заявленного резонансного СВЧ компрессора является то, что резонатор выполнен планарно-объемным в форме меандра путем деления отрезка волновода длиной L=Nλ/2 на m одинаковых секций длиной L=kλ/2 каждая, где k=N/m - число вариант рабочей...
Тип: Изобретение
Номер охранного документа: 0002604107
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b06

Электромагнитный привод тормоза форсированного пуска асинхронного двигателя

Изобретение относится к электротехнике и может быть использовано в качестве быстродействующего электромагнитного привода тормоза в электродвигателях, требующих быстрого торможения и фиксации вала механизма в электроталях, лифтах, станках и т.д. Электромагнитный привод тормоза форсированного...
Тип: Изобретение
Номер охранного документа: 0002604203
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9fa0

Устройство для генерации последовательно движущихся капель жидкости

Изобретение относится к области исследования свойств жидкостей, а именно к дозаторам с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов жидкостей, и может быть использовано при проведении научных исследований в области гидродинамики, химии, биологии, медицины и др....
Тип: Изобретение
Номер охранного документа: 0002606090
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ffc

Ионный диод с магнитной самоизоляцией

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит...
Тип: Изобретение
Номер охранного документа: 0002606404
Дата охранного документа: 10.01.2017
Показаны записи 51-60 из 150.
13.01.2017
№217.015.8507

Способ определения температуры эксплуатации элементов котельного оборудования

Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, при разработке энергетического оборудования и исследовании новых марок сталей. В способе подготавливают образцы элемента котельного оборудования, затем их нагревают,...
Тип: Изобретение
Номер охранного документа: 0002603207
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.85d4

Способ твердофазной экстракции красителя малахитового зеленого

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции тетраметил-4,4-диаминотрифенилметана (малахитового зеленого) из водных растворов. Способ твердофазной экстракции красителя малахитового зеленого включает взаимодействие полимерной матрицы...
Тип: Изобретение
Номер охранного документа: 0002603161
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.897c

Сверхпроводящий быстродействующий выключатель

Использование: для создания сверхпроводящего быстродействующего выключателя. Сущность изобретения заключается в том, что сверхпроводящий быстродействующий выключатель, содержащий отключающий элемент, выполненный в виде двух последовательно соединенных фольговых проводников из сверхпроводящего...
Тип: Изобретение
Номер охранного документа: 0002602767
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89c9

Способ получения водорастворимой композиции наночастиц серебра

Изобретение относится к способам получения высокодисперсных коллоидных частиц или наночастиц серебра, которые могут быть использованы в биотехнологии, медицине и ветеринарии в составе препаратов с антибактериальным действием, а также в производстве катализаторов химических процессов. Способ...
Тип: Изобретение
Номер охранного документа: 0002602741
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8afb

Резонансный свч компрессор

Изобретение относится к области радиотехники. Особенностью заявленного резонансного СВЧ компрессора является то, что резонатор выполнен планарно-объемным в форме меандра путем деления отрезка волновода длиной L=Nλ/2 на m одинаковых секций длиной L=kλ/2 каждая, где k=N/m - число вариант рабочей...
Тип: Изобретение
Номер охранного документа: 0002604107
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b06

Электромагнитный привод тормоза форсированного пуска асинхронного двигателя

Изобретение относится к электротехнике и может быть использовано в качестве быстродействующего электромагнитного привода тормоза в электродвигателях, требующих быстрого торможения и фиксации вала механизма в электроталях, лифтах, станках и т.д. Электромагнитный привод тормоза форсированного...
Тип: Изобретение
Номер охранного документа: 0002604203
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9fa0

Устройство для генерации последовательно движущихся капель жидкости

Изобретение относится к области исследования свойств жидкостей, а именно к дозаторам с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов жидкостей, и может быть использовано при проведении научных исследований в области гидродинамики, химии, биологии, медицины и др....
Тип: Изобретение
Номер охранного документа: 0002606090
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ffc

Ионный диод с магнитной самоизоляцией

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит...
Тип: Изобретение
Номер охранного документа: 0002606404
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a748

Способ переработки растворов после карбонатного вскрытия вольфрамовых руд

Изобретение относится к способу переработки растворов после карбонатного вскрытия вольфрамовых руд. Способ включает извлечение вольфрама из раствора после карбонатного выщелачивания в фазу органического анионита, извлечение вольфрама из анионита в водный продуктивный раствор с получением из...
Тип: Изобретение
Номер охранного документа: 0002608117
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.af1d

Водогрейный жаротрубный котёл с турбулизаторами улиточного типа

Изобретение относится к теплоэнергетике и может быть использовано для нагрева теплоносителя в системах отопления и горячего водоснабжения для жилищно-коммунального хозяйства, бытовых и производственных нужд. Водогрейный жаротрубный котел с турбулизаторами улиточного типа содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002610985
Дата охранного документа: 17.02.2017
+ добавить свой РИД